Acta Optica Sinica, Volume. 43, Issue 15, 1526001(2023)

Generation and Mode Recognition Method of Vectorial Vortex Beams

Shiyao Fu1,2,3、* and Chunqing Gao1,2,3、**
Author Affiliations
  • 1School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China
  • 2Key Laboratory of Information Photonics Technology, Ministry of Industry and Information Technology, Beijing 100081, China
  • 3Key Laboratory of Photoelectronic Imaging Technology and System, Ministry of Education, Beijing 100081, China
  • show less
    References(127)

    [1] Poynting J H. The wave motion of a revolving shaft, and a suggestion as to the angular momentum in a beam of circularly polarised light[J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 82, 560-567(1909).

    [2] Beth R A. Mechanical detection and measurement of the angular momentum of light[J]. Physical Review, 50, 115(1936).

    [3] Jackson J D[M]. Classical electrodynamics(1962).

    [4] Allen L, Beijersbergen M W, Spreeuw R J et al. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes[J]. Physical Review. A, Atomic, Molecular, and Optical Physics, 45, 8185-8189(1992).

    [5] Yao A M, Padgett M J. Orbital angular momentum: origins, behavior and applications[J]. Advances in Optics and Photonics, 3, 161-204(2011).

    [6] Gao C Q, Fu S Y[M]. Vortex beams(2019).

    [7] Zhan Q. Cylindrical vector beams: from mathematical concepts to applications[J]. Asian and Pacific Migration Journal: APMJ, 1, 1-57(2009).

    [8] Forbes A, de Oliveira M, Dennis M R. Structured light[J]. Nature Photonics, 15, 253-262(2021).

    [9] Wang J, Yang J Y, Fazal I M et al. Terabit free-space data transmission employing orbital angular momentum multiplexing[J]. Nature Photonics, 6, 488-496(2012).

    [10] Willner A E, Huang H, Yan Y et al. Optical communications using orbital angular momentum beams[J]. Advances in Optics and Photonics, 7, 66-106(2015).

    [11] Liu J Y, Zhang J X, Liu J et al. 1-Pbps orbital angular momentum fibre-optic transmission[J]. Light: Science & Applications, 11, 1-11(2022).

    [12] Fu S Y, Zhai Y W, Zhou H et al. Demonstration of free-space one-to-many multicasting link from orbital angular momentum encoding[J]. Optics Letters, 44, 4753-4756(2019).

    [13] Shang Z J, Fu S Y, Hai L et al. Multiplexed vortex state array toward high-dimensional data multicasting[J]. Optics Express, 30, 34053-34063(2022).

    [14] Lavery M P J, Speirits F C, Barnett S M et al. Detection of a spinning object using lights orbital angular momentum[J]. Science, 341, 537-540(2013).

    [15] Fang L, Wan Z Y, Forbes A et al. Vectorial Doppler metrology[J]. Nature Communications, 12, 1-10(2021).

    [16] Guo H X, Qiu X D, Qiu S et al. Frequency upconversion detection of rotational Doppler effect[J]. Photonics Research, 10, 183-188(2022).

    [17] Fu S Y, Wang T L, Zhang Z Y et al. Non-diffractive Bessel-Gauss beams for the detection of rotating object free of obstructions[J]. Optics Express, 25, 20098-20108(2017).

    [18] Zhai Y W, Fu S Y, Yin C et al. Detection of angular acceleration based on optical rotational Doppler effect[J]. Optics Express, 27, 15518-15527(2019).

    [19] Padgett M, Bowman R. Tweezers with a twist[J]. Nature Photonics, 5, 343-348(2011).

    [20] Yang Y J, Ren Y X, Chen M Z et al. Optical trapping with structured light: a review[J]. Advanced Photonics, 3, 034001(2021).

    [21] Fickler R, Lapkiewicz R, Huber M et al. Interface between path and orbital angular momentum entanglement for high-dimensional photonic quantum information[J]. Nature Communications, 5, 1-6(2014).

    [22] Cao H, Gao S C, Zhang C et al. Distribution of high-dimensional orbital angular momentum entanglement a 1 km few-mode fiber[J]. Optica, 7, 232-237(2020).

    [23] Li Z X, Zhu D, Lin P C et al. High-dimensional entanglement generation based on a Pancharatnam-Berry phase metasurface[J]. Photonics Research, 10, 2702-2707(2022).

    [24] Meier M, Romano V, Feurer T. Material processing with pulsed radially and azimuthally polarized laser radiation[J]. Applied Physics A, 86, 329-334(2007).

    [25] Zheng J, Huang J X, Xu S L. Multiscale micro-/nanostructures on single crystalline SiC fabricated by hybridly polarized femtosecond laser[J]. Optics and Lasers in Engineering, 127, 105940(2020).

    [26] Cui T, Sun L, Bai B et al. Probing and imaging photonic spin-orbit interactions in nanostructures[J]. Laser and Photonics Reviews, 15, 2100011(2021).

    [27] Bernet S, Jesacher A, Fürhapter S et al. Quantitative imaging of complex samples by spiral phase contrast microscopy[J]. Optics Express, 14, 3792-3805(2006).

    [28] Huang Y W, Rubin N A, Ambrosio A et al. Versatile total angular momentum generation using cascaded J-plates[J]. Optics Express, 27, 7469-7484(2019).

    [29] Liu S L, Liu S K, Yang C et al. Classical simulation of high-dimensional entanglement by non-separable angular-radial modes[J]. Optics Express, 27, 18363-18375(2019).

    [30] Liu S L, Zhou Q, Liu S K et al. Classical analogy of a cat state using vortex light[J]. Communications Physics, 2, 1-9(2019).

    [31] Wan Z S, Shen Y J, Liu Q et al. Multipartite classically entangled scalar beams[J]. Optics Letters, 47, 2052-2055(2022).

    [32] Shen Y J, Nape I, Yang X L et al. Creation and control of high-dimensional multi-partite classically entangled light[J]. Light: Science & Applications, 10, 1-10(2021).

    [33] Shen Y J, Rosales-Guzmán C. Nonseparable states of light: from quantum to classical[J]. Laser & Photonics Reviews, 16, 2100533(2022).

    [34] Fu S Y, Shang Z J, Hai L et al. Orbital angular momentum comb generation from azimuthal binary phases[J]. Advanced Photonics Nexus, 1, 016003(2022).

    [35] Chong A, Wan C H, Chen J et al. Generation of spatiotemporal optical vortices with controllable transverse orbital angular momentum[J]. Nature Photonics, 14, 350-354(2020).

    [36] Wan C H, Chen J, Chong A et al. Generation of ultrafast spatiotemporal wave packet embedded with time-varying orbital angular momentum[J]. Science Bulletin, 65, 1334-1336(2020).

    [37] Cao Q, Chen J, Lu K Y et al. Non-spreading Bessel spatiotemporal optical vortices[J]. Science Bulletin, 67, 133-140(2022).

    [38] Wan C H, Cao Q, Chen J et al. Toroidal vortices of light[J]. Nature Photonics, 16, 519-522(2022).

    [39] Chen P, Ge S J, Duan W et al. Digitalized geometric phases for parallel optical spin and orbital angular momentum encoding[J]. ACS Photonics, 4, 1333-1338(2017).

    [40] Fu S Y, Zhang S K, Wang T L et al. Rectilinear lattices of polarization vortices with various spatial polarization distributions[J]. Optics Express, 24, 18486-18491(2016).

    [41] Fu S Y, Wang T L, Zhang Z Y et al. Selective acquisition of multiple states on hybrid Poincare sphere[J]. Applied Physics Letters, 110, 191102(2017).

    [42] Rosales-Guzmán C, Bhebhe N, Forbes A. Simultaneous generation of multiple vector beams on a single SLM[J]. Optics Express, 25, 25697-25706(2017).

    [43] Wang H, Fu S Y, Gao C Q. Tailoring a complex perfect optical vortex array with multiple selective degrees of freedom[J]. Optics Express, 29, 10811-10824(2021).

    [44] Shen Y J, Yang X L, Naidoo D et al. Structured ray-wave vector vortex beams in multiple degrees of freedom from a laser[J]. Optica, 7, 820-831(2020).

    [45] Wang Z Y, Shen Y J, Naidoo D et al. Astigmatic hybrid SU(2) vector vortex beams: towards versatile structures in longitudinally variant polarized optics[J]. Optics Express, 29, 315-329(2021).

    [46] Shen Y J, Yang X L, Fu X et al. Periodic-trajectory-controlled, coherent-state-phase-switched, and wavelength-tunable SU(2) geometric modes in a frequency-degenerate resonator[J]. Applied Optics, 57, 9543-9549(2018).

    [47] Poincare ́ H[M]. Theorie mathematique de la Lomiere(1892).

    [48] Milione G, Evans S, Nolan D A et al. Higher order Pancharatnam-Berry phase and the angular momentum of light[J]. Physical Review Letters, 108, 190401(2012).

    [49] Milione G, Sztul H I, Nolan D A et al. Higher-order Poincaré sphere, stokes parameters, and the angular momentum of light[J]. Physical Review Letters, 107, 053601(2011).

    [50] Yi X N, Liu Y C, Ling X H et al. Hybrid-order Poincaré sphere[J]. Physical Review A, 91, 023801(2015).

    [51] Ren Z C, Rong L J, Li S M et al. Generalized Poincaré sphere[J]. Optics Express, 23, 26586-26595(2015).

    [52] Fu S Y, Hai L, Song R et al. Representation of total angular momentum states of beams through a four-parameter notation[J]. New Journal of Physics, 23, 083015(2021).

    [53] Jones P H, Rashid M, Makita M et al. Sagnac interferometer method for synthesis of fractional polarization vortices[J]. Optics Letters, 34, 2560-2562(2009).

    [54] Liu S, Li P, Peng T et al. Generation of arbitrary spatially variant polarization beams with a trapezoid Sagnac interferometer[J]. Optics Express, 20, 21715-21721(2012).

    [55] Li P, Zhang Y, Liu S et al. Generation of perfect vectorial vortex beams[J]. Optics Letters, 41, 2205-2208(2016).

    [56] Wang X L, Ding J P, Ni W J et al. Generation of arbitrary vector beams with a spatial light modulator and a common path interferometric arrangement[J]. Optics Letters, 32, 3549-3551(2007).

    [57] Liu S, Qi S X, Zhang Y et al. Highly efficient generation of arbitrary vector beams with tunable polarization, phase, and amplitude[J]. Photonics Research, 6, 228-233(2018).

    [58] Fu S Y, Gao C Q, Shi Y et al. Generating polarization vortices by using helical beams and a Twyman Green interferometer[J]. Optics Letters, 40, 1775-1778(2015).

    [59] Wang T L, Fu S Y, Zhang S K et al. A Sagnac-like interferometer for the generation of vector beams[J]. Applied Physics B, 122, 231(2016).

    [60] Wang T L, Fu S Y, He F et al. Generation of perfect polarization vortices using combined gratings in a single spatial light modulator[J]. Applied Optics, 56, 7567-7571(2017).

    [61] Xin J T, Gao C Q, Li C et al. Generation of polarization vortices with a Wollaston prism and an interferometric arrangement[J]. Applied Optics, 51, 7094-7097(2012).

    [62] Fu S Y, Zhai Y W, Wang T L et al. Tailoring arbitrary hybrid Poincaré beams through a single hologram[J]. Applied Physics Letters, 111, 211101(2017).

    [63] Moreno I, Davis J A, Hernandez T M et al. Complete polarization control of light from a liquid crystal spatial light modulator[J]. Optics Express, 20, 364-376(2012).

    [64] Moreno I, Davis J A, Cottrell D M et al. Encoding high-order cylindrically polarized light beams[J]. Applied Optics, 53, 5493-5501(2014).

    [65] Han W, Yang Y F, Cheng W et al. Vectorial optical field generator for the creation of arbitrarily complex fields[J]. Optics Express, 21, 20692-20706(2013).

    [66] Cai M Q, Wang Z X, Liang J et al. High-efficiency and flexible generation of vector vortex optical fields by a reflective phase-only spatial light modulator[J]. Applied Optics, 56, 6175-6180(2017).

    [67] Fu S Y, Wang T L, Gao C Q. Generating perfect polarization vortices through encoding liquid-crystal display devices[J]. Applied Optics, 55, 6501-6505(2016).

    [68] Fu S Y, Gao C Q, Wang T L et al. Simultaneous generation of multiple perfect polarization vortices with selective spatial states in various diffraction orders[J]. Optics Letters, 41, 5454-5457(2016).

    [69] Fu S Y, Gao C Q, Wang T L et al. Anisotropic polarization modulation for the production of arbitrary Poincaré beams[J]. Journal of the Optical Society of America B, 35, 1-7(2018).

    [70] Zhou H, Gao C Q, Fu S Y et al. Experimental demonstration of generating arbitrary total angular momentum states[J]. Chinese Optics Letters, 18, 110503(2020).

    [71] Passilly N, de Saint Denis R, Aït-Ameur K et al. Simple interferometric technique for generation of a radially polarized light beam[J]. Journal of the Optical Society of America A: Optics, Image Science, and Vision, 22, 984-991(2005).

    [72] Phua P B, Lai W J. Simple coherent polarization manipulation scheme for generating high power radially polarized beam[J]. Optics Express, 15, 14251-14256(2007).

    [73] Bashkansky M, Park D, Fatemi F K. Azimuthally and radially polarized light with a nematic SLM[J]. Optics Express, 18, 212-217(2010).

    [74] Bliokh K Y, Rodríguez-Fortuño F J, Nori F et al. Spin–orbit interactions of light[J]. Nature Photonics, 9, 796-808(2015).

    [75] Liu Y C, Ke Y G, Luo H L et al. Photonic spin Hall effect in metasurfaces: a brief review[J]. Nanophotonics, 6, 51-70(2016).

    [76] Chen P, Wei B Y, Hu W et al. Liquid-crystal-mediated geometric phase: from transmissive to broadband reflective planar optics[J]. Advanced Materials, 32, 1903665(2020).

    [77] Marrucci L, Manzo C, Paparo D. Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media[J]. Physical Review Letters, 96, 163905(2006).

    [78] Liu Z X, Liu Y Y, Ke Y G et al. Generation of arbitrary vector vortex beams on hybrid-order Poincaré sphere[J]. Photonics Research, 5, 15-21(2017).

    [79] Xin J T, Dai K J, Zhong L et al. Generation of optical vortices by using spiral phase plates made of polarization dependent devices[J]. Optics Letters, 39, 1984-1987(2014).

    [80] Yu N F, Genevet P, Kats M A et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction[J]. Science, 334, 333-337(2011).

    [81] Kim J, Seong J, Yang Y et al. Tunable metasurfaces towards versatile metalenses and metaholograms: a review[J]. Advanced Photonics, 4, 024001(2022).

    [82] Hsiao H H, Chu C H, Tsai D P. Fundamentals and applications of metasurfaces[J]. Small Methods, 1, 1600064(2017).

    [83] Wang X W, Nie Z Q, Liang Y et al. Recent advances on optical vortex generation[J]. Nanophotonics, 7, 1533-1556(2018).

    [84] Yue F Y, Wen D D, Zhang C M et al. Multichannel polarization-controllable superpositions of orbital angular momentum states[J]. Advanced Materials, 29, 1603838(2017).

    [85] Zhang X, Huang L L, Zhao R Z et al. Multiplexed generation of generalized vortex beams with on-demand intensity profiles based on metasurfaces[J]. Laser & Photonics Reviews, 16, 2100451(2022).

    [86] Zhou H, Yang J Q, Gao C Q et al. High-efficiency, broadband all-dielectric transmission metasurface for optical vortex generation[J]. Optical Materials Express, 9, 2699(2019).

    [87] Zhang Z C, Hai L, Fu S Y et al. Advances on solid-state vortex laser[J]. Photonics, 9, 215(2022).

    [88] Kim D J, Kim J W. Direct generation of an optical vortex beam in a single-frequency Nd: YVO4 laser[J]. Optics Letters, 40, 399-402(2015).

    [89] Yao Y, Xia K G, Kang M Q et al. Transverse mode transition and LG01-mode generation in an end-pumped Nd: YVO4 laser[J]. Chinese Optics Letters, 11, 121406(2013).

    [90] Oh Y J, Kim T H, Park E J et al. Direct generation of the first-radial-order Laguerre–Gaussian mode in a Nd: YVO 4 laser incorporating a core-ring-shaped pump fibre[J]. Laser Physics, 30, 095801(2020).

    [91] He H S, Chen Z, Li H B et al. Low-threshold, nanosecond, high-repetition-rate vortex pulses with controllable helicity generated in Cr, Nd: YAG self-Q-switched microchip laser[J]. Laser Physics, 28, 055802(2018).

    [92] Chen D M, Miao Y J, Fu H et al. High-order cylindrical vector beams with tunable topological charge up to 14 directly generated from a microchip laser with high beam quality and high efficiency[J]. APL Photonics, 4, 106106(2019).

    [93] Ding Y S, Yang J W, Chen D M et al. Rectangular beam pumped Raman microchip laser for generating multiwavelength high-order Hermite–Gaussian lasers and vortex lasers[J]. Annalen Der Physik, 534, 2200095(2022).

    [94] Li K, Tang K F, Lin D et al. Direct generation of optical vortex beams with tunable topological charges up to 18th using an axicon[J]. Optics & Laser Technology, 143, 107339(2021).

    [95] Lin G P, Cao Y Q, Ji R R et al. Direct generation of a narrow-linewidth Laguerre–Gaussian vortex laser in a monolithic nonplanar oscillator[J]. Optics Letters, 43, 4164-4167(2018).

    [96] Qiao Z, Xie G Q, Wu Y H et al. Generating high-charge optical vortices directly from laser up to 288th order[J]. Laser & Photonics Reviews, 12, 1800019(2018).

    [97] Qiao Z, Wan Z Y, Xie G et al. Multi-vortex laser enabling spatial and temporal encoding[J]. PhotoniX, 1, 1-14(2020).

    [98] Ngcobo S, Litvin I, Burger L et al. A digital laser for on-demand laser modes[J]. Nature Communications, 4, 1-6(2013).

    [99] Naidoo D, Roux F S, Dudley A et al. Controlled generation of higher-order Poincaré sphere beams from a laser[J]. Nature Photonics, 10, 327-332(2016).

    [100] Sroor H, Huang Y W, Sephton B et al. High-purity orbital angular momentum states from a visible metasurface laser[J]. Nature Photonics, 14, 498-503(2020).

    [101] Piccardo M, de Oliveira M, Toma A et al. Vortex laser arrays with topological charge control and self-healing of defects[J]. Nature Photonics, 16, 359-365(2022).

    [102] Sheng Q, Wang A H, Ma Y Y et al. Intracavity spherical aberration for selective generation of single-transverse-mode Laguerre-Gaussian output with order up to 95[J]. PhotoniX, 3, 1-12(2022).

    [103] Song R, Gao C Q, Zhou H et al. Resonantly pumped Er: YAG vector laser with selective polarization states at 1.6 µm[J]. Optics Letters, 45, 4626-4629(2020).

    [104] Song R, Liu X T, Fu S Y et al. Simultaneous tailoring of longitudinal and transverse mode inside an Er: YAG laser[J]. Chinese Optics Letters, 19, 111404(2021).

    [105] Wang K X, Zhang X, Fu S Y et al. 1645-nm single-frequency vortex laser from an Er: YAG nonplanar ring oscillator[J]. Optics Letters, 48, 331-334(2023).

    [106] Liu J, Chen S, Wang H Y et al. Amplifying orbital angular momentum modes in ring-core erbium-doped fiber[J]. Research, 2020, 7623751(2020).

    [107] Jiang X H, Yao J N, Zhang S Y et al. All-fiber switchable orbital angular momentum mode-locked laser based on TM-FBG[J]. Applied Physics Letters, 121, 131101(2022).

    [108] Wang S Q, Li Y, Zhao S et al. Switchable transverse mode operation of a fiber laser with an external feedback cavity[J]. Laser Physics Letters, 18, 105101(2021).

    [109] Ji K H, Lin D, Davidson I A et al. Controlled generation of picosecond-pulsed higher-order Poincaré sphere beams from an ytterbium-doped multicore fiber amplifier[J]. Photonics Research, 11, 181-188(2022).

    [110] Cai X L, Wang J W, Strain M et al. Integrated compact optical vortex beam emitters[J]. Science, 338, 363-366(2012).

    [111] Li S M, Ding Y H, Guan X W et al. Compact high-efficiency vortex beam emitter based on a silicon photonics micro-ring[J]. Optics Letters, 43, 1319-1322(2018).

    [112] Zhang J, Sun C Z, Xiong B et al. An InP-based vortex beam emitter with monolithically integrated laser[J]. Nature Communications, 9, 1-6(2018).

    [113] Xie Z W, Lei T, Li F et al. Ultra-broadband on-chip twisted light emitter for optical communications[J]. Light: Science & Applications, 7, 18001(2018).

    [115] Wang Y, Zhao P, Feng X et al. Integrated photonic emitter with a wide switching range of orbital angular momentum modes[J]. Scientific Reports, 6, 1-9(2016).

    [116] Zhang Q, Ni J C, Qiu C W. Vortex 4.0 on chip[J]. Light, Science & Applications, 9, 103(2020).

    [117] Hu X B, Guzman C R. Generation and characterization of complex vector modes with digital micromirror devices: a tutorial[J]. Journal of Optics, 24, 034001(2022).

    [118] Zhao B, Hu X B, Rodríguez-Fajardo V et al. Determining the non-separability of vector modes with digital micromirror devices[J]. Applied Physics Letters, 116, 091101(2020).

    [119] Zhao B, Hu X B, Rodríguez-Fajardo V et al. Real-time Stokes polarimetry using a digital micromirror device[J]. Optics Express, 27, 31087-31093(2019).

    [120] Fu S Y, Gao C Q. Progress of detecting orbital angular momentum states of optical vortices through diffraction gratings[J]. Acta Physica Sinica, 67, 034201(2018).

    [121] Fu S Y, Huang L, Lü Y L et al. Advances on the measurement of orbital angular momentum spectra for laser beams(Invited)[J]. Infrared and Laser Engineering, 50, 20210145(2021).

    [122] Fu S, Zhai Y, Zhang J et al. Universal orbital angular momentum spectrum analyzer for beams[J]. PhotoniX, 1, 19(2020).

    [123] Wang J Q, Fu S Y, Shang Z J et al. Adjusted EfficientNet for the diagnostic of orbital angular momentum spectrum[J]. Optics Letters, 47, 1419-1422(2022).

    [124] Lü Y L, Shang Z J, Fu S Y et al. Sorting orbital angular momentum of photons through a multi-ring azimuthal-quadratic phase[J]. Optics Letters, 47, 5032-5035(2022).

    [125] Berkhout G C G, Lavery M P J, Courtial J et al. Efficient sorting of orbital angular momentum states of light[J]. Physical Review Letters, 105, 153601(2010).

    [126] Mirhosseini M, Malik M, Shi Z M et al. Efficient separation of the orbital angular momentum eigenstates of light[J]. Nature Communications, 4, 2781(2013).

    [127] Wen Y H, Chremmos I, Chen Y J et al. Spiral transformation for high-resolution and efficient sorting of optical vortex modes[J]. Physical Review Letters, 120, 193904(2018).

    Tools

    Get Citation

    Copy Citation Text

    Shiyao Fu, Chunqing Gao. Generation and Mode Recognition Method of Vectorial Vortex Beams[J]. Acta Optica Sinica, 2023, 43(15): 1526001

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Physical Optics

    Received: Mar. 8, 2023

    Accepted: Apr. 3, 2023

    Published Online: Jul. 28, 2023

    The Author Email: Fu Shiyao (fushiyao@bit.edu.cn), Gao Chunqing (gao@bit.edu.cn)

    DOI:10.3788/AOS230651

    Topics