Chinese Journal of Lasers, Volume. 49, Issue 23, 2304002(2022)
High-Precision Laser Tracing Control Method
[1] Wan A, Song L B, Xu J et al. Calibration and compensation of machine tool volumetric error using a laser tracker[J]. International Journal of Machine Tools and Manufacture, 124, 126-133(2018).
[2] Mei B, Xie F G, Liu X J et al. Calibration of a 6-DOF industrial robot considering the actual mechanical structures and CNC system[C], 6-10(2017).
[3] Aguado S, Samper D, Santolaria J et al. Identification strategy of error parameter in volumetric error compensation of machine tool based on laser tracker measurements[J]. International Journal of Machine Tools and Manufacture, 53, 160-169(2012).
[4] Moeller C, Schmidt H C, Koch P et al. Real time pose control of an industrial robotic system for machining of large scale components in aerospace industry using laser tracker system[J]. SAE International Journal of Aerospace, 10, 100-108(2017).
[5] Wang X K, Zheng L G. A method for testing radius of curvature of optical spheric surface[J]. Acta Optica Sinica, 31, 0812010(2011).
[6] Hughes B, Forbes A, Lewis A et al. Laser tracker error determination using a network measurement[J]. Measurement Science and Technology, 22, 045103(2011).
[7] Li J, Wu F, Wu S B et al. Using a laser tracker to measure the surface of off-axis aspheric mirror during grinding[J]. Acta Optica Sinica, 32, 0112002(2012).
[8] Schwenke H, Schmitt R, Jatzkowski P et al. On-the-fly calibration of linear and rotary axes of machine tools and CMMs using a tracking interferometer[J]. CIRP Annals, 58, 477-480(2009).
[9] Schwenke H, Knapp W, Haitjema H et al. Geometric error measurement and compensation of machines: an update[J]. CIRP Annals, 57, 660-675(2008).
[10] Ibaraki S, Tsuboi K. ”Open-loop” tracking interferometer measurement using rotary axes of a five-axis machine tool[J]. IEEE/ASME Transactions on Mechatronics, 22, 2342-2350(2017).
[11] Schwenke H, Franke M, Hannaford J et al. Error mapping of CMMs and machine tools by a single tracking interferometer[J]. CIRP Annals, 54, 475-478(2005).
[12] Lin J. Analysis of PID control mode based on intelligent control[J]. China Steel Focus, 67-68(2020).
[13] Yan Z Q[D]. Model predictive current control of permanent magnet synchronous motor based on sliding mode observer, 2-6(2021).
[14] Zhou X X, Zhou Y P, Zhang Z et al. Maximum torque per ampere current predictive control of interior permanent magnet synchronous motors based on parameter identification[J]. Optics and Precision Engineering, 28, 1083-1093(2020).
[15] Zheng Z D, Wang K, Li Y D et al. Current controller for AC motors using model predictive control[J]. Transactions of China Electrotechnical Society, 28, 118-123(2013).
[16] Wang D W, Li C J, Wu Y et al. Model predictive current control scheme for permanent magnet synchronous motors[J]. Transactions of China Electrotechnical Society, 29, 73-79(2014).
[17] Yao X L, Ma C W, Wang J F et al. Robust model predictive current control for PMSM based on prediction error compensation[J]. Proceedings of the CSEE, 41, 6071-6081(2021).
[18] Chen W H, Yang J, Guo L et al. Disturbance-observer-based control and related methods: an overview[J]. IEEE Transactions on Industrial Electronics, 63, 1083-1095(2015).
[19] Huang Y, Wang J Z, Shi D W et al. Performance assessment of discrete-time extended state observers: theoretical and experimental results[J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 65, 2256-2268(2018).
[20] Xia X Q, Zhang B, Li X T et al. Low speed sliding mode control of permanent magnet synchronous motor based on extended state observer[J]. Optics and Precision Engineering, 27, 2628-2638(2019).
[21] Liu C L, Wang M, Zhang J. ESO based RBF neural network PID controller for quadrotor aircrafts[J]. Electronics Optics & Control, 28(2021).
[22] Pu Z Q, Yuan R Y, Yi J Q et al. A class of adaptive extended state observers for nonlinear disturbed systems[J]. IEEE Transactions on Industrial Electronics, 62, 5858-5869(2015).
[23] Cui R X, Chen L P, Yang C G et al. Extended state observer-based integral sliding mode control for an underwater robot with unknown disturbances and uncertain nonlinearities[J]. IEEE Transactions on Industrial Electronics, 64, 6785-6795(2017).
[24] Yang H J, Sun J H, Xia Y Q et al. Position control for magnetic rodless cylinders with strong static friction[J]. IEEE Transactions on Industrial Electronics, 65, 5806-5815(2018).
[25] Chen H F, Tang L, Zhang S et al. Effects of position sensitive detector on laser tracing measurement system[J]. Chinese Journal of Lasers, 47, 1104001(2020).
[26] Song H X, Shi Z Y, Chen H F et al. Error analysis and accuracy assurance of two-dimensional rotatory axes for laser tracing measurement system[J]. Chinese Journal of Lasers, 45, 0504001(2018).
[27] Li J[D]. Prediction error analysis and suppression of model predictive current control for PMSM drives(2019).
[28] Liu X, Sun X X, Liu S G et al. Non-fragile recursive sliding mode dynamic surface control with adaptive neural network[J]. Control Theory & Applications, 30, 1323-1328(2013).
[29] Pu M, Liu P, Xiong A. Advanced Fal function and three novel nonlinear extended state observers[J]. Control and Decision, 36, 1655-1662(2021).
[30] Zhang A D, Zhang Y R, Li T. Application of variable domain fuzzy PID control in semiconductor laser temperature control system[J]. Acta Optica Sinica, 41, 1214003(2021).
Get Citation
Copy Citation Text
Hongfang Chen, Ruoshui Sun, Ruibin He, Huixu Song. High-Precision Laser Tracing Control Method[J]. Chinese Journal of Lasers, 2022, 49(23): 2304002
Category: Measurement and metrology
Received: Jan. 10, 2022
Accepted: Mar. 17, 2022
Published Online: Oct. 31, 2022
The Author Email: Chen Hongfang (chf0302@126.com), Song Huixu (huixu_song@bjut.edu.cn)