Chinese Journal of Lasers, Volume. 48, Issue 16, 1610003(2021)

Multi-Dimensional CNN Fused Algorithm for Hyperspectral Remote Sensing Image Classification

Jinxiang Liu1, Wei Ban1, Yu Chen1, Yaqin Sun1, Huifu Zhuang1, Erjiang Fu2, and Kefei Zhang1,2,3、*
Author Affiliations
  • 1School of Environment and Spatial Informatics, China University of Mining and Technology, Xuzhou, Jiangsu 221116,China
  • 2Bei-Stars Geospatial Information Innovation Institute, Nanjing, Jiangsu 210000,China
  • 3Space Research Centre, RMIT University, Victoria, Melbourne 3001, Australia
  • show less
    Figures & Tables(11)
    Convolution calculation process of 3D-2D-1D CNN model
    Process diagrams of decomposed 3D CNN and 3D-2D-1D CNN. (a) Decomposed 3D CNN; (b) 3D-2D-1D CNN
    Hyperspectral data used in experiment. (a) Indian Pines; (b) Pavia University; (c) Salinas Scene; (d) WHU-Hi-Han Chuan
    Correlation coefficient graphs of spectral and spatial features of Indian Pines dataset. (a) Correlation coefficient of spectral features; (b) correlation coefficient of spatial features
    Test results of each model classification in Indian Pines dataset. (a) Ground truth; (b) SVM; (c) 2D CNN; (d) 3D CNN; (e) 3D-2D CNN; (f) 3D-2D-1D CNN
    Overall classification accuracy and loss of proposed model in 100 epochs. (a) Overall classification accuracy; (b) loss
    • Table 1. Datasets of Indian Pines, Pavia University, Salinas Scene, and WHU-Hi-Han Chuan

      View table

      Table 1. Datasets of Indian Pines, Pavia University, Salinas Scene, and WHU-Hi-Han Chuan

      Indian PinesSalinas SceneWHU-Hi-Han ChuanPavia University
      ClassNumber of samplesClassNumber of samplesClassNumber of samplesClassNumber of samples
      Alfalfa46Brocoli green weeds 12009Strawberry44735Asphalt6631
      Corn notill1428Brocoli green weeds 23726Cowpea22753Meadows18649
      Corn mintill830Fallow1976Soybean10287Gravel2099
      Corn237Fallow rough plow1394Sorghum5353Trees3064
      Grass pasture483Fallow smooth2678Water spinach1200Shadows947
      Grass trees730Stubble3959Watermelon4533Bare soil5029
      Grass pasturemowed28Celery3579Greens5903Self blockingbricks3682
      Hay windrowed478Grapes untrained11271Trees17978
      Oats20Soil vinyard develop6203Grass9469Bitumen1330
      Soybean notill972Vinyard untrained7268Red roof10516Painted metalsheets1345
      Soybean mintill2455Lettuce romaine 4wk1068Gray roof16911
      Soybean clean593Lettuce romaine 5wk1927Plastic3679
      Wheat205Lettuce romaine 6wk916Bare soil9116
      Woods1265Lettuce romaine 7wk1070Road18560
      Buildings grass trees drives386Corn-senesced greenweeds3278Bright object1136
      Stone steel towers93Vinyard vertical trellis1807Water75401
    • Table 2. Convolution training model of Indian Pines dataset

      View table

      Table 2. Convolution training model of Indian Pines dataset

      Layer (type)Output shapeNumber of parameters
      Input_1 (Input layer)(None, 25, 25, 30, 1)0
      Conv3d (Conv3D)(None, 23, 23, 24, 8)512
      Conv3d_1 (Conv3D)(None, 21, 21, 20, 16)5776
      Reshape (Reshape)(None, 21, 21, 320)0
      Conv2d (Conv2D)(None, 19, 19, 32)92192
      Reshape_1 (Reshape)(None, 19, 608)0
      Conv1d (Conv1D)(None, 17, 64)116800
      Flatten (Flatten)(None, 1088)0
      Dense (Dense)(None, 256)278784
      Dropout (Dropout)(None, 256)0
      Dense_1 (Dense)(None, 128)32896
      Dropout_1 (Dropout)(None, 128)0
      Dense_2 (Dense)(None, 16)2064
      Total number of parameters: 5361913
    • Table 3. Classification accuracies of each model in Indian Pines, Pavia University, Salinas Scene and WHU-Hi-Han Chuan datasets unit: %

      View table

      Table 3. Classification accuracies of each model in Indian Pines, Pavia University, Salinas Scene and WHU-Hi-Han Chuan datasets unit: %

      DatasetAccuracy of classificationSVM2D CNN3D CNN3D-2D CNN3D-2D CNN(new)3D-2D-1D CNN
      Indian PinesOA69.67589.56096.96299.33194.32899.652
      AA51.65294.44397.63898.14193.48398.974
      KAPPA64.49884.36496.52699.23893.51299.603
      Pavia UniversityOA71.69097.26298.83499.93099.95399.947
      AA55.55398.65598.45699.88299.90999.883
      KAPPA57.04191.95798.45699.90799.93899.929
      Salinas SceneOA93.41895.23899.937100.000100.000100.000
      AA96.78499.99399.895100.000100.000100.000
      KAPPA92.66393.10399.929100.000100.000100.000
      WHU-Hi-Han ChuanOA81.57599.27199.91799.95699.95399.849
      AA62.33698.20599.80099.80299.87299.816
      KAPPA78.13699.14699.90399.94899.94599.823
    • Table 4. Classification accuracy of each model for each ground object sample in Indian Pines dataset unit:%

      View table

      Table 4. Classification accuracy of each model for each ground object sample in Indian Pines dataset unit:%

      No.ClassSVM2D CNN3D CNN3D-2D CNN3D-2D CNN(new)3D-2D-1D CNN
      1Alfalfa52.17415.217100.00087.50087.500100.000
      2Corn notill84.80471.91996.70098.50090.60099.600
      3Corn mintill73.85550.72381.928100.00087.608100.000
      4Corn64.13525.316100.000100.00083.13398.795
      5Grass pasture89.64865.01098.225100.00097.63399.408
      6Grass trees96.02787.94599.804100.00099.60999.609
      7Grass pasture mowed71.42921.429100.00095.000100.00090.000
      8Hay windrowed89.33161.088100.000100.000100.000100.000
      9Oats45.0005.000100.00092.85792.857100.000
      10Soybean notill82.51057.81995.000100.00088.235100.000
      11Soybean mintill89.93984.23699.76799.01199.65199.767
      12Soybean clean77.57245.36397.83198.31391.80799.277
      13Wheat97.56152.195100.00099.30198.60198.601
      14Woods94.70491.70098.87199.77494.018100.000
      15Buildings grass trees drives69.43040.93394.074100.00093.70498.519
      16Stone steel towers79.57050.538100.000100.00090.769100.000
    • Table 5. Training time and test time of each model in Indian Pines, Pavia University, Salinas Scene, and WHU-Hi-Han Chuan datasets

      View table

      Table 5. Training time and test time of each model in Indian Pines, Pavia University, Salinas Scene, and WHU-Hi-Han Chuan datasets

      DatasetClassification performanceSVM2D CNN3D CNN3D-2D CNN3D-2D CNN(new)3D-2D-1D CNN
      Indian PinesTraining time /s1.18901.201477.93968.71642.97600.77
      Test time /s0.986.5118.0420.0414.2813.37
      Pavia UniversityTrain time /s2.23180.28953.88725.11564.86564.32
      Test time /s4.384.3721.2023.2920.1719.81
      Salinas SceneTrain time /s3.41572.691155.50920.70706.34664.93
      Test time /s8.345.525.9329.4225.4322.83
      WHU-Hi-Han ChuanTraining time /s678.3351396.1757935.2245372.4303410.0253228.423
      Test time /s862.01627.298148.706149.471129.047114.472
    Tools

    Get Citation

    Copy Citation Text

    Jinxiang Liu, Wei Ban, Yu Chen, Yaqin Sun, Huifu Zhuang, Erjiang Fu, Kefei Zhang. Multi-Dimensional CNN Fused Algorithm for Hyperspectral Remote Sensing Image Classification[J]. Chinese Journal of Lasers, 2021, 48(16): 1610003

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: remote sensing and sensor

    Received: Dec. 23, 2020

    Accepted: Feb. 25, 2021

    Published Online: Jul. 30, 2021

    The Author Email: Kefei Zhang (profkzhang@gmail.com)

    DOI:10.3788/CJL202148.1610003

    Topics