Chinese Journal of Ship Research, Volume. 20, Issue 2, 140(2025)
Operation standardization evaluation method based on improved YOLOv8n for ship equipment disassembly and assembly
[10] [10] GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies f accurate object detection semantic segmentation[C]Proceedings of 2014 IEEE Conference on Computer Vision Pattern Recognition. Columbus: IEEE, 2014: 580−587. doi: 10.1109CVPR.2014.81.
[12] [12] REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, realtime object detection[C]Proceedings of 2016 IEEE Conference on Computer Vision Pattern Recognition. Las Vegas: IEEE, 2016: 779−788. doi: 10.1109CVPR.2016.91.
[13] [13] REDMON J, FARHADI A. YOLOv3: an incremental improvement[R]. Washington: University of Washington, 2018.
[14] [14] REDMON J, FARHADI A. YOLO9000: better, faster, stronger[C]Proceedings of 2017 IEEE Conference on Computer Vision Pattern Recognition. Honolulu: IEEE, 2017: 6517−6525. doi: 10.1109CVPR.2017.690.
[15] [15] GE Z, LIU S T, WANG F, et al. YOLOX: exceeding YOLO series in 2021[JOL]. arXiv: 2107.08430. https:arxiv.gabs2107.08430.
[16] [16] LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot multibox detect[C]Proceedings of the 14th European Conference on Computer VisionECCV 2016. Amsterdam: Springer, 2016: 21−37. doi: 10.10079783319464480_2.
[17] [17] DUAN K W, BAI S, XIE L X, et al. Center: keypoint triplets f object detection[C]Proceedings of 2019 IEEECVF International Conference on Computer Vision. Seoul, Kea (South): IEEE, 2019: 6568−6577. doi: 10.1109ICCV.2019.00667.
[24] [24] JOCHER C. Ultralytics YOLO[EBOL]. (20230110)[20240426]. https:github.comultralyticsultralytics.
[25] [25] ZHANG Q L, YANG Y B. SA: shuffle attention f deep convolutional neural wks[C]Proceedings of 2021 IEEE International Conference on Acoustics, Speech Signal Processing. Tonto: IEEE, 2021: 22352239. doi: 10.1109ICASSP39728.2021.9414568.
[26] [26] LIU S, QI L, QIN H F, et al. Path aggregation wk f instance segmentation[C]Proceedings of 2018 IEEECVF Conference on Computer Vision Pattern Recognition. Salt Lake City: IEEE, 2018: 8759−8768. doi: 10.1109CVPR.2018.00913.
[27] [27] JIANG Y Q, TAN Z Y, WANG J Y, et al. GiraffeDet: a heavyneck paradigm f object detection[JOL]. arXiv: 2202.04256. https:arxiv.gabs2202.04256.
[29] [29] LI X, WANG W H, WU L J, et al. Generalized focal loss: learning qualified distributed bounding boxes f dense object detection[C]Proceedings of the 34th International Conference on Neural Infmation Processing Systems. Vancouver: Curran Associates Inc. , 2020. doi: 10.55553495724.3497487.
[30] [30] TONG Z J, CHEN Y H, XU Z W, et al. WiseIoU: bounding box regression loss with dynamic focusing mechanism[JOL]. arXiv: 2301.10051. https:arxiv.gabs2301.10051.
[31] [31] WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module[C]Proceedings of the 15th European Conference on Computer Vision–ECCV 2018. Munich: Springer, 2018. doi: 10.10079783030012342_1.
[33] [33] HOU Q B, ZHOU D Q, FENG J S. Codinate attention f efficient mobile wk design[C]Proceedings of 2021 IEEECVF Conference on Computer Vision Pattern Recognition. Nashville: IEEE, 2021: 13708−13717. doi: 10.1109CVPR46437.2021.01350.
[34] [34] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]Proceedings of the 31st International Conference on Neural Infmation Processing Systems. Long Beach: Curran Associates Inc. , 2017. doi: 10.55553295222.3295349.
[35] [35] JOCHER G, CHAURASIA A, STOKEN A, et al. Ultralyticsyolov5: v7.0YOLOv5 SOTA realtime instance segmentation[EBOL]. (20200610)[20240426]. https:doi.g10.5281zenodo.3908559.
[36] [36] WANG C Y, BOCHKOVSKIY A, LIAO H Y M. YOLOv7: trainable bagoffreebies sets new stateoftheart f realtime object detects[C]Proceedings of 2023 IEEECVF Conference on Computer Vision Pattern Recognition. Vancouver: IEEE, 2023. doi: 10.1109CVPR52729.2023.00721.
Get Citation
Copy Citation Text
Zhendong ZHANG, Cong GUAN, Zehui ZHANG, Chao WU, Xuewen DING. Operation standardization evaluation method based on improved YOLOv8n for ship equipment disassembly and assembly[J]. Chinese Journal of Ship Research, 2025, 20(2): 140
Category: Ship Intelligent O&M, and Fault Diagnosis
Received: Apr. 28, 2024
Accepted: --
Published Online: May. 15, 2025
The Author Email: