Acta Physica Sinica, Volume. 69, Issue 11, 114301-1(2020)

Analysis of sound field distribution of angle dimension in deep ocean bottom bounce area and its application to active sonar vertical beam pitch

Zhi-Bin Han1,3、*, Zhao-Hui Peng2, and Xiong-Hou Liu3,4
Author Affiliations
  • 1University of Chinese Academy of Sciences, Beijing 100049, China
  • 2State Key Laboratory of Acoustics, Institute of Acoustics, Chinese Academy of Sciences, Beijing 100190, China
  • 3Unit 92578 of the People’s Liberation Army of China, Beijing 100161, China
  • 4School of Marine Science and Technology, Northwestern Polytechnical University, Xi’an 710129, China
  • show less
    Figures & Tables(14)
    Transmission loss variety with the change of distance and receiver depth in Munk sound channel.
    Transmission loss variety with the change of distance in Munk sound channel when the receiver depth is fixed.
    Acoustic field distribution of angle dimension in Munk sound channel.
    Acoustic field formed by different normal mode (ray) clusters: (a) Acoustic field formed by normal mode 1 to normal mode 120 (rays with emanating angle from 0° to 9.5°); (b) acoustic field formed by normal mode 121 to normal mode 216 (rays with ema-nating angle from 9.5° to 18.2°); (c) acoustic field formed by normal mode 217 to normal mode 314 (rays with emanating angle from 18.2° to 27.6°); (d) acoustic field formed by normal mode 315 to norm al mode 354 (rays with emanating angle from 27.6° to 31.7°).
    Sketch map of two types of rays with the value of 20° in angle dimension.
    Comparison of WKBZ simulation and theoretical prediction about acoustic field distribution of angle dimension when source frequency varies (source depth is 50 m): (a) 100 Hz; (b) 200 Hz; (c) 300 Hz.
    Comparison of WKBZ simulation and theoretical prediction about acoustic field distribution of angle dimension when source depth varies (source frequency is 100 Hz): (a) 30 m; (b) 50 m; (c) 80 m.
    Comparison of WKBZ simulation and theoretical prediction about acoustic field distribution of angle dimension when sound velocity gradient varies: (a) Sound velocity profiles when sound velocity gradient varies; (b) comparison of results.
    Comparison of WKBZ simulation and theoretical prediction about acoustic field distribution of angle dimension when channel axis depth varies: (a) Sound velocity profiles when channel axis depth varies; (b) comparison of results.
    Comparison of WKBZ simulation and theoretical prediction about acoustic field distribution of angle dimension when sea depth varies: (a) Sound velocity profiles when sea depth varies; (b) comparison of results.
    Pulse signal design of active sonar based on acoustic field distribution of angle dimension.
    Acoustic field distribution of angle dimension.
    Array gain comparision between method of this article and the method of random setting: (a) Array gains of different methods; (b) transmission loss and distribution of detectable areas.
    • Table 1.

      Array gain comparison data form between method of this article and the method of random setting.

      本文方法和传统随机设置波束俯仰角方法阵增益比较数据表

      View table
      View in Article

      Table 1.

      Array gain comparison data form between method of this article and the method of random setting.

      本文方法和传统随机设置波束俯仰角方法阵增益比较数据表

      可探测区1可探测区2可探测区3可探测区4所有可探测区(15—50 km)
      本文方法4.56.05.78.06.4
      10º俯仰角, 传统方法–10.4–14.03.77.0–2.4
      20º俯仰角, 传统方法1.75.73.51.23.3
    Tools

    Get Citation

    Copy Citation Text

    Zhi-Bin Han, Zhao-Hui Peng, Xiong-Hou Liu. Analysis of sound field distribution of angle dimension in deep ocean bottom bounce area and its application to active sonar vertical beam pitch[J]. Acta Physica Sinica, 2020, 69(11): 114301-1

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Oct. 29, 2019

    Accepted: --

    Published Online: Dec. 2, 2020

    The Author Email:

    DOI:10.7498/aps.69.20201652

    Topics