Acta Optica Sinica, Volume. 43, Issue 16, 1623005(2023)
High-Q Surface Lattice Resonances
[1] Fort E, Grésillon S. Surface enhanced fluorescence[J]. Journal of Physics D, 41, 013001(2008).
[2] Langer J, de Aberasturi D J, Aizpurua J et al. Present and future of surface-enhanced raman scattering[J]. ACS Nano, 14, 28-117(2020).
[3] Stiles P L, Dieringer J A, Shah N C et al. Surface-enhanced Raman spectroscopy[J]. Annual Review of Analytical Chemistry, 1, 601-626(2008).
[4] Neubrech F, Huck C, Weber K et al. Surface-enhanced infrared spectroscopy using resonant nanoantennas[J]. Chemical Reviews, 117, 5110-5145(2017).
[5] Koenderink A F, Alù A, Polman A. Nanophotonics: shrinking light-based technology[J]. Science, 348, 516-521(2015).
[6] Khurgin J B. How to deal with the loss in plasmonics and metamaterials[J]. Nature Nanotechnology, 10, 2-6(2015).
[7] Kuznetsov A I, Miroshnichenko A E, Brongersma M L et al. Optically resonant dielectric nanostructures[J]. Science, 354, aag2472(2016).
[8] Baranov D G, Zuev D A, Lepeshov S I et al. All-dielectric nanophotonics: the quest for better materials and fabrication techniques[J]. Optica, 4, 814-825(2017).
[9] Grinblat G, Li Y, Nielsen M P et al. Enhanced third harmonic generation in single germanium nanodisks excited at the anapole mode[J]. Nano Letters, 16, 4635-4640(2016).
[10] Kravets V G, Kabashin A V, Barnes W L et al. Plasmonic surface lattice resonances: a review of properties and applications[J]. Chemical Reviews, 118, 5912-5951(2018).
[11] Evlyukhin A B, Reinhardt C, Seidel A et al. Optical response features of Si-nanoparticle arrays[J]. Physical Review B, 82, 045404(2010).
[12] Auguié B, Bendaña X M, Barnes W L et al. Diffractive arrays of gold nanoparticles near an interface: critical role of the substrate[J]. Physical Review B, 82, 155447(2010).
[13] Wang X W, Kogos L C, Paiella R. Giant distributed optical-field enhancements from Mie-resonant lattice surface modes in dielectric metasurfaces[J]. OSA Continuum, 2, 32-42(2018).
[14] Chu Y Z, Schonbrun E, Yang T A et al. Experimental observation of narrow surface plasmon resonances in gold nanoparticle arrays[J]. Applied Physics Letters, 93, 181108(2008).
[15] Laux F, Bonod N, Gérard D. Single emitter fluorescence enhancement with surface lattice resonances[J]. The Journal of Physical Chemistry C, 121, 13280-13289(2017).
[16] Bin-Alam M S, Reshef O, Mamchur Y et al. Ultra-high-Q resonances in plasmonic metasurfaces[J]. Nature Communications, 12, 974(2021).
[17] Deng S K, Li R, Park J E et al. Ultranarrow plasmon resonances from annealed nanoparticle lattices[J]. Proceedings of the National Academy of Sciences of the United States of America, 117, 23380-23384(2020).
[18] Yang F, Chen Q Y, Wang J J et al. Fabrication of centimeter-scale plasmonic nanoparticle arrays with ultranarrow surface lattice resonances[J]. ACS Nano, 17, 725-734(2023).
[19] Humphrey A D, Meinzer N, Starkey T A et al. Surface lattice resonances in plasmonic arrays of asymmetric disc dimers[J]. ACS Photonics, 3, 634-639(2016).
[20] Cuartero-González A, Sanders S, Zundel L et al. Super- and subradiant lattice resonances in bipartite nanoparticle arrays[J]. ACS Nano, 14, 11876-11887(2020).
[21] Li R, Bourgeois M R, Cherqui C et al. Hierarchical hybridization in plasmonic honeycomb lattices[J]. Nano Letters, 19, 6435-6441(2019).
[22] Zundel L, May A, Manjavacas A. Lattice resonances induced by periodic vacancies in arrays of nanoparticles[J]. ACS Photonics, 8, 360-368(2021).
[23] Lim T L, Vaddi Y, Bin-Alam M S et al. Fourier-engineered plasmonic lattice resonances[J]. ACS Nano, 16, 5696-5703(2022).
[24] Li R, Wang D Q, Guan J et al. Plasmon nanolasing with aluminum nanoparticle arrays[J]. Journal of the Optical Society of America B, 36, E104-E111(2019).
[25] Guan J, Sagar L K, Li R et al. Engineering directionality in quantum dot shell lasing using plasmonic lattices[J]. Nano Letters, 20, 1468-1474(2020).
[26] Guan J, Sagar L K, Li R et al. Quantum dot-plasmon lasing with controlled polarization patterns[J]. ACS Nano, 14, 3426-3433(2020).
[27] Huttunen M J, Reshef O, Stolt T et al. Efficient nonlinear metasurfaces by using multiresonant high-Q plasmonic arrays[J]. Journal of the Optical Society of America B, 36, E30-E35(2019).
[28] Stolt T, Vesala A, Rekola H et al. Multiply-resonant second-harmonic generation using surface lattice resonances in aluminum metasurfaces[J]. Optics Express, 30, 3620-3631(2022).
[29] Babicheva V E, Evlyukhin A B. Resonant lattice kerker effect in metasurfaces with electric and magnetic optical responses[J]. Laser & Photonics Reviews, 11, 1700132(2017).
[30] Murai S, Castellanos G W, Raziman T V et al. Enhanced light emission by magnetic and electric resonances in dielectric metasurfaces[J]. Advanced Optical Materials, 8, 1902024(2020).
[31] Ochiai T, Sakoda K. Dispersion relation and optical transmittance of a hexagonal photonic crystal slab[J]. Physical Review B, 63, 125107(2001).
[32] Pacradouni V, Mandeville W J, Cowan A R et al. Photonic band structure of dielectric membranes periodically textured in two dimensions[J]. Physical Review B, 62, 4204-4207(2000).
[33] Fan S H, Joannopoulos J D. Analysis of guided resonances in photonic crystal slabs[J]. Physical Review B, 65, 235112(2002).
[34] Yang J H, Huang Z T, Maksimov D N et al. Low-threshold bound state in the continuum lasers in hybrid lattice resonance metasurfaces[J]. Laser & Photonics Reviews, 15, 2100118(2021).
[35] Kischkat J, Peters S, Gruska B et al. Mid-infrared optical properties of thin films of aluminum oxide, titanium dioxide, silicon dioxide, aluminum nitride, and silicon nitride[J]. Applied Optics, 51, 6789-6798(2012).
[36] Zhang X Y, Cao Q T, Wang Z et al. Symmetry-breaking-induced nonlinear optics at a microcavity surface[J]. Nature Photonics, 13, 21-24(2019).
[37] Ao X Y. Surface mode with large field enhancement in dielectric-dimer-on-mirror structures[J]. Optics Letters, 43, 1091-1094(2018).
[38] Ao X Y, Wang D Q, Odom T W. Enhanced fields in mirror-backed low-index dielectric structures[J]. ACS Photonics, 6, 2612-2617(2019).
[39] Ao X Y, Xu X N, Dong J W et al. Unidirectional enhanced emission from 2D monolayer suspended by dielectric pillar array[J]. ACS Applied Materials & Interfaces, 10, 34817-34821(2018).
[40] Dong J W, Chen S, Huang G F et al. Low‐index‐contrast dielectric lattices on metal for refractometric sensing[J]. Advanced Optical Materials, 8, 2000877(2020).
[41] Wu Q, Wang L F, Ao X Y. Narrowband mid-infrared absorber based on a mirror-backed low-index dielectric lattice[J]. Journal of the Optical Society of America B, 38, 2306-2311(2021).
[42] Wang Y H, Xiong L, Tian M et al. Mirror-backed dielectric metasurface sensor with ultrahigh figure of merit based on a super-narrow Rayleigh anomaly[J]. Applied Optics, 60, 11205-11210(2021).
[43] Hu J G, Xiao Y X, Zhou L M et al. Ultra-narrow-band circular dichroism by surface lattice resonances in an asymmetric dimer-on-mirror metasurface[J]. Optics Express, 30, 16020-16030(2022).
[44] Utyushev A D, Zakomirnyi V I, Rasskazov I L. Collective lattice resonances: plasmonics and beyond[J]. Reviews in Physics, 6, 100051(2021).
[45] Wang D Q, Guan J, Hu J T et al. Manipulating light-matter interactions in plasmonic nanoparticle lattices[J]. Accounts of Chemical Research, 52, 2997-3007(2019).
[46] Wang B Q, Yu P, Wang W H et al. High-Q plasmonic resonances: fundamentals and applications[J]. Advanced Optical Materials, 9, 2001520(2021).
[47] Pourjamal S, Hakala T K, Nečada M et al. Lasing in Ni nanodisk arrays[J]. ACS Nano, 13, 5686-5692(2019).
[48] Kataja M, Hakala T K, Julku A et al. Surface lattice resonances and magneto-optical response in magnetic nanoparticle arrays[J]. Nature Communications, 6, 7072(2015).
[49] Verre R, Baranov D G, Munkhbat B et al. Transition metal dichalcogenide nanodisks as high-index dielectric Mie nanoresonators[J]. Nature Nanotechnology, 14, 679-683(2019).
[50] Shen F H, Zhang Z H, Zhou Y Q et al. Transition metal dichalcogenide metaphotonic and self-coupled polaritonic platform grown by chemical vapor deposition[J]. Nature Communications, 13, 5597(2022).
[51] Babicheva V E, Moloney J V. Lattice resonances in transdimensional WS2 nanoantenna arrays[J]. Applied Sciences, 9, 2005(2019).
[52] Lu H A, Yue Z J, Li Y W et al. Magnetic plasmon resonances in nanostructured topological insulators for strongly enhanced light-MoS2 interactions[J]. Light: Science & Applications, 9, 191(2020).
[53] Wang D Q, Bourgeois M R, Lee W K et al. Stretchable nanolasing from hybrid quadrupole plasmons[J]. Nano Letters, 18, 4549-4555(2018).
[54] Yang A K, Hryn A J, Bourgeois M R et al. Programmable and reversible plasmon mode engineering[J]. Proceedings of the National Academy of Sciences of the United States of America, 113, 14201-14206(2016).
[55] Abass A, Rodriguez S R K, Ako T et al. Active liquid crystal tuning of metallic nanoantenna enhanced light emission from colloidal quantum dots[J]. Nano Letters, 14, 5555-5560(2014).
[56] Yang A K, Hoang T B, Dridi M et al. Real-time tunable lasing from plasmonic nanocavity arrays[J]. Nature Communications, 6, 6939(2015).
[57] Chen S A, Huang X C, Wu Q et al. Photochromic switching of narrow-band lattice resonances[J]. Optics Letters, 47, 337-340(2022).
[58] Taskinen J M, Moilanen A J, Rekola H et al. All-optical emission control and lasing in plasmonic lattices[J]. ACS Photonics, 7, 2850-2858(2020).
[59] Weiss A, Frydendahl C, Bar-David J et al. Tunable metasurface using thin-film lithium niobate in the telecom regime[J]. ACS Photonics, 9, 605-612(2022).
Get Citation
Copy Citation Text
Yixuan Du, Xianyu Ao, Yangjian Cai. High-Q Surface Lattice Resonances[J]. Acta Optica Sinica, 2023, 43(16): 1623005
Category: Optical Devices
Received: Apr. 23, 2023
Accepted: May. 29, 2023
Published Online: Aug. 1, 2023
The Author Email: Ao Xianyu (aox@sdnu.edu.cn), Cai Yangjian (yangjian_cai@163.com)