Laser & Optoelectronics Progress, Volume. 54, Issue 8, 80401(2017)
Optimization of Doped Region and Metal Electrode Patterned Structure on Rear Side of Interdigitated Back Contact Crystalline Silicon Solar Cell
[1] [1] Schwartz R J, Lammert M D. Silicon solar cells for high concentration applications[C]. International Electron Devices Meeting, 1975: 188896.
[2] [2] Lammert M D, Schwartz R J. The interdigitated back contact solar cell: A silicon solar cell for use in concentrated sunlight[J]. IEEE Transactions on Electron Devices, 1977, 24(4): 337-342.
[3] [3] Masuko K, Shigematsu M, Hashiguchi T, et al. Achievement of more than 25% conversion efficiency with crystalline silicon heterojunction solar cell[J]. IEEE Journal of Photovoltaics, 2014, 4(6): 1433-1435.
[4] [4] Benabadji B, Zerga A. Optimal design of buried emitter of EWT silicon solar cells type by numerical simulation[J]. Energy Procedia, 2014, 44: 126-131.
[5] [5] Smith D D, Cousins P J, Masad A, et al. SunPower's Maxeon Gen III solar cell: High efficiency and energy yield[C]. Photovoltaic Specialists Conference, 2013: 14116288.
[6] [6] Green M A, Emery K, Hishikawa Y, et al. Solar cell efficiency tables (version 47)[J]. Progress in Photovoltaics: Research and Applications, 2016, 24(1): 3-11.
[7] [7] Swanson R M. Approaching the 29% limit efficiency of silicon solar cells[C]. Photovoltaic Specialists Conference, 2005: 8478952.
[8] [8] Granek F. High-efficiency back-contact back-junction silicon solar cells[D]. Freiburg: Universitt Freiburg, 2009.
[9] [9] Huang Z H, Zhang J J, Ni J, et al. Numerical simulation of a triple-junction thin-film solar cell based on μc-Si1-xGex: H[J]. Chinese Physics B, 2013, 22(9): 098803.
[10] [10] Granek F, Hermle M, Huljic'D M, et al. Enhanced lateral current transport via the front N+diffused layer of n-type high-efficiency back-junction back-contact silicon solar cells[J]. Progress in Photovoltaics: Research and Applications, 2009, 17(1): 47-56.
[11] [11] Gong C, Singh S, Robbelein J, et al. High efficient n-type back-junction back-contact silicon solar cells with screen-printed Al-alloyed emitter and effective emitter passivation study[J]. Progress in Photovoltaics: Research and Applications, 2011, 19(7): 781-786.
[12] [12] Chen P, Liang S W, Lee J G, et al. Modeling and analysis of geometry design of n-type interdigitated back-contact silicon solar cell[C]. 27th European Photovoltaic Solar Cell Conference and Exhibition, 2012: 1296-1298.
[13] [13] Zanuccoli M, Magnone P, Sangiorgi E, et al. Analysis of the impact of geometrical and technological parameters on recombination losses in interdigitated back-contact solar cells[J]. Solar Energy, 2015, 116: 37-44.
[14] [14] Brendel R, Dreissigacker S, Harder N-P, et al. Theory of analyzing free energy losses in solar cells[J]. Applied Physics Letters, 2008, 93(17): 173503.
[15] [15] Greulich J, Hffler H, Würfel U, et al. Numerical power balance and free energy loss analysis for solar cells including optical, thermodynamic, and electrical aspects[J]. Journal of Applied Physics, 2013, 114(20): 204504.
[16] [16] Mcintosh K R, Baker-Finch S C. OPAL 2: Rapid optical simulation of silicon solar cells[C]. Photovoltaic Specialists Conference, 2012: 13045723.
[17] [17] Baker-Finch S C, McIntosh K R. Reflection of normally incident light from silicon solar cells with pyramidal texture[J]. Progress in Photovoltaics: Research and Applications, 2011, 19(4): 406-416.
[18] [18] Palik E D. Handbook of optical constants of solids[M]. New York: Academic Press, 1998: 759-763.
[19] [19] Fell A. A free and fast three-dimensional/two-dimensional solar cell simulator featuring conductive boundary and quasi-neutrality approximations[J]. IEEE Transactions on Electron Devices, 2013, 60(2): 733-738.
[20] [20] Fell A, Fong K C, McIntosh K R, et al. 3-D simulation of interdigitated-back-contact silicon solar cells with quokka including perimeter losses[J]. IEEE Journal of Photovoltaics, 2014, 4(4): 1040-1045.
[21] [21] Fell A, McIntosh K R, Abbott M, et al. Quokka version 2: Selective surface doping, luminescence modeling and data fitting[C]. 23rd Photovoltaic Science and Engineering Conference, 2013.
[22] [22] Franklin E, Fong K, McIntosh K, et al. Design, fabrication and characterisation of a 24.4% efficient interdigitated back contact solar cell[J]. Progress in Photovoltaics: Research and Applications, 2016, 24(4): 411-427.
[23] [23] Yang X B, Bullock J, Xu L J, et al. Passivated contacts to laser doped p+ and n+ regions[J]. Solar Energy Materials and Solar Cells, 2015, 140: 38-44.
[24] [24] Fell A, Surve S, Franklin E, et al. Characterization of laser-doped localized p-n junctions for high efficiency silicon solar cells[J]. IEEE Transactions on Electron Devices, 2014, 61(6): 1943-1949.
[25] [25] Brendel R. Modeling solar cells with the dopant-diffused layers treated as conductive boundaries[J]. Progress in Photovoltaics: Research and Applications, 2012, 20(1): 31-43.
[26] [26] Pierret R F. Semiconductor device fundamentals[M]. India: Pearson Education, 1996: 83-84.
Get Citation
Copy Citation Text
Hu Fan, Cao Shuangying, Yin Min, Chen Xiaoyuan, Li Dongdong. Optimization of Doped Region and Metal Electrode Patterned Structure on Rear Side of Interdigitated Back Contact Crystalline Silicon Solar Cell[J]. Laser & Optoelectronics Progress, 2017, 54(8): 80401
Category: Detectors
Received: Feb. 22, 2017
Accepted: --
Published Online: Aug. 2, 2017
The Author Email: Hu Fan (huf@sari.ac.cn)