Acta Laser Biology Sinica, Volume. 32, Issue 2, 139(2023)
Discovery and Identification of a Novel Nav1.7 Peptide Inhibitor from Spider Venom
[1] [1] DIB-HAJJ S D, YANG Y, BLACK J A, et al. The Na(V)1.7 sodium channel: from molecule to man [J]. Nature Reviews Neuroscience, 2013, 14(1): 49-62.
[2] [2] DE LERA RUIZ M, KRAUS R L. Voltage-gated sodium channels: structure, function, pharmacology, and clinical indications [J]. Journal of Medicinal Chemistry, 2015, 58(18): 7093-7118.
[4] [4] COX J J, REIMANN F, NICHOLAS A K, et al. An SCN9A channelopathy causes congenital inability to experience pain [J]. Nature, 2006, 444(7121): 894-898.
[5] [5] ESTACION M, DIB-HAJJ S D, BENKE P J, et al. Nav1.7 gain-of-function mutations as a continuum: A1632E displays physiological changes associated with erythromelalgia and paroxysmal extreme pain disorder mutations and produces symptoms of both disorders [J]. The Journal of Neuroscience: the Official Journal of the Society for Neuroscience, 2008, 28(43): 11079-11088.
[6] [6] GINGRAS J, SMITH S, MATSON D J, et al. Global Nav1.7 knockout mice recapitulate the phenotype of human congenital indifference to pain [J]. PLoS One, 2014, 9(9): e105895.
[7] [7] GOLDBERG Y P, MACFARLANE J, MACDONALD M L, et al. Loss-of-function mutations in the Nav1.7 gene underlie congenital indifference to pain in multiple human populations [J]. Clinical Genetics, 2007, 71(4): 311-319.
[8] [8] SUTER M R, BHUIYAN Z A, LAEDERMANN C J, et al. p.L1612P, a novel voltage-gated sodium channel Nav1.7 mutation inducing a cold sensitive paroxysmal extreme pain disorder [J]. Anesthesiology, 2015, 122(2): 414-423.
[9] [9] YANG Y, HUANG J, MIS M A, et al. Nav1.7-A1632G mutation from a family withinherited erythromelalgia: enhanced firing of dorsal root ganglia neurons evoked by thermal stimuli [J]. The Journal of Neuroscience: the Official Journal of the Society for Neuroscience, 2016, 36(28): 7511-7522.
[10] [10] YANG Y, WANG Y, LI S, et al. Mutations in SCN9A, encoding a sodium channel alpha subunit, in patients with primary erythermalgia [J]. Journal of Medical Genetics, 2004, 41(3): 171-174.
[11] [11] LANGENEGGER N, NENTWIG W, KUHN-NENTWIG L. Spider venom: components, modes of action, and novel strategies in transcriptomic and proteomic analyses [J]. Toxins, 2019, 11(10): 611.
[12] [12] DONGOL Y, CARDOSO F C, LEWIS R J. Spider knottin pharmacology at voltage-gated sodium channels and their potential to modulate pain pathways [J]. Toxins, 2019, 11(11): 626.
[13] [13] WU T, WANG M, WU W, et al. Spider venom peptides as potential drug candidates due to their anticancer and antinociceptive activities [J]. The Journal of Venomous Animals and Toxins Including Tropical Diseases, 2019, 25: e146318.
[14] [14] CATTERALL W A, CESTèLE S, YAROV-YAROVOY V, et al. Voltage-gated ion channels and gating modifier toxins [J]. Toxicon: Official Journal of the International Society on Toxinology, 2007, 49(2): 124-141.
[15] [15] LIANG S. An overview of peptide toxins from the venom of the Chinese bird spider Selenocosmia huwena Wang [=Ornithoctonus huwena(Wang)] [J]. Toxicon: Official Journal of the International Society on Toxinology, 2004, 43(5): 575-585.
[16] [16] KING G F, GENTZ M C, ESCOUBAS P, et al. A rational nomenclature for naming peptide toxins from spiders and other venomous animals [J]. Toxicon: Official Journal of the International Society on Toxinology, 2008, 52(2): 264-276.
[17] [17] ZHANG Y, TACHTSIDIS G, SCHOB C, et al. KCND2 variants associated with global developmental delay differentially impair Kv4.2 channel gating [J]. Human Molecular Genetics, 2021, 30(23): 2300-2314.
[18] [18] CHOW C Y, CRISTOFORI-ARMSTRONG B, UNDHEIM E A, et al. Three peptide modulators of the human voltage-gated sodium channel 1.7, an important analgesic target, from the venom of an Australian Tarantula [J]. Toxins, 2015, 7(7): 2494-2513.
[19] [19] CARDOSO F C, DEKAN Z, ROSENGREN K J, et al. Identification and characterization of ProTx-III [μ-TRTX-Tp1a], a new voltage-gated sodium channel inhibitor from venom of the tarantula Thrixopelma pruriens [J]. Molecular Pharmacology, 2015, 88(2): 291-303.
[20] [20] REVELL J D, LUND P E, LINLEY J E, et al. Potency optimization of Huwentoxin-IV on hNav1.7: a neurotoxin TTX-S sodium-channel antagonist from the venom of the Chinese bird-eating spider Selenocosmia huwena [J]. Peptides, 2013, 44: 40-46.
[21] [21] XIAO Y, BINGHAM J P, ZHU W, et al. Tarantula huwentoxin-IV inhibits neuronal sodium channels by binding to receptor site 4 and trapping the domain ii voltage sensor in the closed configuration [J]. The Journal of Biological Chemistry, 2008, 283(40): 27300-27313.
[22] [22] LIU Z, CAI T, ZHU Q, et al. Structure and function of hainantoxin-III, a selective antagonist of neuronal tetrodotoxin-sensitive voltage-gated sodium channels isolated from the Chinese bird spider Ornithoctonus hainana [J]. The Journal of Biological Chemistry, 2013, 288(28): 20392-20403.
Get Citation
Copy Citation Text
LUO Sen, YANG Kun, LI Min, XIAO Wenxuan, LEI Wei, ZHANG Zixuan, CHEN Minzhi. Discovery and Identification of a Novel Nav1.7 Peptide Inhibitor from Spider Venom[J]. Acta Laser Biology Sinica, 2023, 32(2): 139
Received: Dec. 7, 2022
Accepted: --
Published Online: Jan. 27, 2024
The Author Email: