Laser Journal, Volume. 46, Issue 3, 98(2025)
A lifelong learning method for hyperspectral image classification using multi-level knowledge distillation
[1] [1] Yang H, Yu H, Zheng K, et al. Hyperspectral image classification based on interactive transformer and CNN with multilevel feature fusion network[J]. IEEE Geoscience and Remote Sensing Letters, 2023, 8: 85-91.
[2] [2] Liu K, Sun W, Shao Y, et al. Mapping coastal wetlands using transformer in transformer deep network on China ZY1-02D hyperspectral satellite images[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2022, 15: 3891-3903.
[3] [3] Yuan Y, Meng X, Sun W, et al. Multi-resolution collaborative fusion of SAR, multispectral and hyperspectral images for coastal wetlands mapping[J]. Remote Sensing, 2022, 14(14): 3492.
[4] [4] Li W, Wu G, Zhang F, et al. Hyperspectral image classification using deep pixel-pair features[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 55(2): 844-853.
[5] [5] Hu W, Huang Y, Wei L, et al. Deep convolutional neural networks for hyperspectral image classification[J]. Journal of Sensors, 2015, 2015: 1-12.
[6] [6] Ghamisi P, Yokoya N, Li J, et al. Advances in hyperspectral image and signal processing: A comprehensive overview of the state of the art[J]. IEEE Geoscience and Remote Sensing Magazine, 2017, 5(4): 37-78.
[7] [7] Liu Y, Su Y, Liu A A, et al. Mnemonics training: Multiclass incremental learning without forgetting[C]//Proceedings of the IEEE/CVF conference on Computer Vision and Pattern Recognition. 2020: 12245-12254.
[8] [8] Rebuffi S A, Kolesnikov A, Sperl G, et al. icarl: Incremental classifier and representation learning[C]//Proceedings of the IEEE conference on Computer Vision and Pattern Recognition. 2017: 2001-2010.
[9] [9] Bai J, Yuan A, Xiao Z, et al. Class incremental learning with few-shots based on linear programming for hyperspectral image classification[J]. IEEE Transactions on Cybernetics, 2020, 52(6): 5474-5485.
[10] [10] Peng C, Zhao K, Wang T, et al. Few-shot class-incremental learning from an open-set perspective[C]//European Conference on Computer Vision. Cham: Springer Nature Switzerland, 2022: 382-397.
[11] [11] Liu Y, Schiele B, Sun Q. Adaptive aggregation networks for class - incremental learning[C]//Proceedings of the IEEE/CVF conference on Computer Vision and Pattern Recognition. 2021: 2544-2553.
[12] [12] Xu M, Zhao Y, Liang Y, et al. Hyperspectral image classification based on class-incremental learning with knowledge distillation[J]. Remote Sensing, 2022, 14(11): 2556.
[13] [13] Hou S, Pan X, Loy C C, et al. Learning a unified classifier incrementally via rebalancing[C]//Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2019: 831-839.
[14] [14] Zhao W, Peng R, Wang Q, et al. Life - Long Learning With Continual Spectral-Spatial Feature Distillation for Hyperspectral Image Classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 1-14.
[15] [15] Yu C, Zhao X, Gong B, et al. Distillation-Constrained Prototype Representation Network for Hyperspectral Image Incremental Classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2024.
[16] [16] Vaswani A, Shazeer N, Parmar N, et al. Attention is all you need[J]. Advances in neural information processing systems, 2017, 30: 114-120.
[17] [17] Chen T, Kornblith S, Norouzi M, et al. A simple framework for contrastive learning of visual representations[C]//International conference on machine learning. PMLR, 2020: 1597-1607.
[18] [18] Afham M, Rodrigo R. Visual-semantic contrastive alignment for few-shot image classification[J]. arXiv preprint arXiv: 2210.11000, 2022.
Get Citation
Copy Citation Text
JIANG Zihui, LI Zhaokui, WANG Ke. A lifelong learning method for hyperspectral image classification using multi-level knowledge distillation[J]. Laser Journal, 2025, 46(3): 98
Category:
Received: Oct. 24, 2024
Accepted: Jun. 12, 2025
Published Online: Jun. 12, 2025
The Author Email: LI Zhaokui (lzk@sau.edu.cn)