Acta Optica Sinica, Volume. 45, Issue 12, 1211004(2025)

High-Accuracy Star Camera Attitude Determination Algorithm Based on Adaptive Weighted Adjustment

Lidan Weng and Guoqiang Zeng*
Author Affiliations
  • School of Remote Sensing and Information Engineering, Wuhan University, Wuhan 430079, Hubei , China
  • show less
    Figures & Tables(12)
    Star point imaging model of star camera
    Attitude determination accuracy of different algorithms for different position noise levels
    Star point coordinate correction model of star camera A. (a) X coordinate; (b) Y coordinate
    Star point coordinate correction model of star camera B. (a) X coordinate; (b) Y coordinate
    Cumulative distribution function curve of angular distance error with lower stray light interference. (a) Star map; (b) error cumulative distribution curve
    Cumulative distribution function curve of angular distance error with higher stray light interference. (a) Star map; (b) error cumulative distribution curve
    Comparisons of attitude inter-frame stabilization with different algorithms for star camera A
    • Table 1. Parameters of star cameras used for experiment

      View table

      Table 1. Parameters of star cameras used for experiment

      ParameterValue
      Star map size /(pixel×pixel)2252×2252
      Pixel size /μm5.48
      Principal point /pixel(1126.0, 1126.0)
      Focal length /mm120.000
      Field of view /[(°)×(°)]5.8×5.8
      Maximum magnitude /mV10.5
    • Table 2. Time consumed by different algorithms for different position noise levels

      View table

      Table 2. Time consumed by different algorithms for different position noise levels

      Algorithmσn=0 pixelσn=4 pixelσn=8 pixelσn=12 pixel
      TRIAD2.6373.3472.8272.688
      MLS1.3931.1001.1891.317
      QUEST1.4981.4851.5011.420
      SVD1.7481.6652.3961.787
      Proposed2.0812.4164.8526.029
    • Table 3. Comparison of attitude stabilization solved by different algorithms for star camera A

      View table

      Table 3. Comparison of attitude stabilization solved by different algorithms for star camera A

      AlgorithmX axis errorY axis errorZ axis error
      TRIAD1.11481.119722.9602
      MLS0.92200.879715.2861
      SVD0.72360.666115.2504
      QUEST0.72350.666015.2364
      Manufacturer’s0.67010.594315.1033
      Proposed0.55970.517311.7438
    • Table 4. Comparison of attitude stabilization solved by different algorithms for star camera B

      View table

      Table 4. Comparison of attitude stabilization solved by different algorithms for star camera B

      AlgorithmX axis errorY axis errorZ axis error
      TRIAD0.98341.006522.5853
      MLS0.59820.58559.2059
      SVD0.47660.49359.1803
      QUEST0.47510.49279.1337
      Manufacturer’s0.44740.44448.9857
      Proposed0.40060.37796.5006
    • Table 5. Comparison of stabilization of star camera A and B optical axis angles solved by different algorithms

      View table

      Table 5. Comparison of stabilization of star camera A and B optical axis angles solved by different algorithms

      Algorithm2024-11-272024-12-012024-12-042024-12-07
      TRIAD2.27962.52952.45482.2643
      MLS1.63511.20551.29123.1560
      SVD0.92501.01001.00580.7971
      QUEST0.92501.01001.00580.7971
      Manufacturer’s0.63140.58410.68720.5927
      Proposed0.43400.44510.45560.4375
    Tools

    Get Citation

    Copy Citation Text

    Lidan Weng, Guoqiang Zeng. High-Accuracy Star Camera Attitude Determination Algorithm Based on Adaptive Weighted Adjustment[J]. Acta Optica Sinica, 2025, 45(12): 1211004

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Imaging Systems

    Received: Feb. 24, 2025

    Accepted: Apr. 22, 2025

    Published Online: Jun. 24, 2025

    The Author Email: Guoqiang Zeng (gq.zeng@whu.edu.cn)

    DOI:10.3788/AOS250630

    CSTR:32393.14.AOS250630

    Topics