Journal of Optoelectronics · Laser, Volume. 35, Issue 10, 1082(2024)
Graphene based terahertz tunable coding metasurface
[1] [1] GONG A P, QIU Y T, CHEN X W, et al. Biomedical applications of terahertz technology[J]. Applied Spectroscopy Reviews, 2020, 55(5): 418-438.
[2] [2] JACOB A, SPIES, JENS N, et al. Terahertz spectroscopy of emerging materials[J]. The Journal of Physical Chemistry C, 2020, 124(41): 22335-22346.
[3] [3] CHEN Z, MA X, ZHANG B, et al. A survey on terahertz communications[J]. China Communications, 2019, 16(2): 1-35.
[4] [4] YU N F, GENEVET P, KATS M A, et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction[J]. Science, 2011, 334(6054): 333-337.
[5] [5] TENG S Y, ZHANG Q, WANG H, et al. Conversion between polarization states based on a metasurface[J]. Photonics Research, 2019, 7(3): 246-250.
[7] [7] DONG Y F, YU D W, LI G S, et al. Terahertz metamaterial modulator based on phase change material VO2[J]. Symmetry, 2021, 13(11): 2230-2237.
[8] [8] RONG J J, YE W J, ZHANG S Y, et al. Frequency-coded passive multifunctional elastic metasurfaces[J]. Advanced Functional Materials, 2020, 30(50): 2005285.
[9] [9] CUI T J, QI M Q, WAN X, et al. Coding metamaterials, digital metamaterials and programmable metamaterials[J]. Light: Science & Application, 2014, 3: e218.
[10] [10] RAN Y Z, LIANG J G, CAI T, et al. High-performance broadband vortex beam generator using reflective Pancharatnam- Berry metasurface[J]. Optics Communications, 2018, 427: 101-106.
[12] [12] VENKATESH S, LU X Y, SAEIDI H, et al. A high-speed programmable and scalable terahertz holographic metasurface based on tiled CMOS chips[J]. Nature Electronics, 2020, 3(12): 785-793.
[13] [13] ABAJO F J G D. Graphene plasmonics: challenges and opportunities[J]. Acs Photonics, 2014, 1(3): 135-152.
[14] [14] CHEN F, CHENG Y Z, LUO H. A broadband tunable terahertz metamaterial absorber based on single-layer complementary gammadion-shaped graphene[J]. Materials, 2020, 13(4): 860-870.
[15] [15] SAJJAD M, KONG X K, LIU S B, et al. Graphene- based THz tunable ultra-wideband polarization converter[J]. Physics Letters A, 2020, 384(23): 126567.
[16] [16] LIU Z M, GAO E D, ZHANG X, et al. Terahertz electro-optical multi-functional modulator and its coupling mechanisms based on upper-layer double graphene ribbons and lower-layer a graphene strip[J]. New Journal of Physics, 2020, 22: 053039.
[18] [18] HANSON G W. Dyadic Green's functions and guided surface waves for a surface conductivity model of graphene[J]. Journal of Applied Physics, 2008, 103(6): 064302.
[19] [19] HUANG M L, CHENG Y Z, CHENG Z Z, et al. Design of a broadband tunable terahertz metamaterial absorber based on complementary structural graphene[J]. Materials, 2018, 11(4): 540-550.
[23] [23] SENSALE-RODRIGUEZ B, YAN R S, Kelly M M, et al. Broadband graphene terahertz modulators enabled by intraband transitions[J]. Nature Communications, 2012, 3: 780-786.
[24] [24] WANG L L, HUANG X J, LI M H, et al. Chirality selective metamaterial absorber with dual bands[J]. Optics Express, 2019, 27(18): 25983-25993.
[25] [25] LIU S, CUI T J, ZHANG L, et al. Convolution operations on coding metasurface to reach flexible and continuous controls of terahertz beams[J]. Advanced Science, 2016, 3: 1600156.
Get Citation
Copy Citation Text
DONG Xianchao, WANG Jingli, WAN Hongdan, CHEN Heming, ZHONG Kai. Graphene based terahertz tunable coding metasurface[J]. Journal of Optoelectronics · Laser, 2024, 35(10): 1082
Category:
Received: Mar. 1, 2023
Accepted: Dec. 31, 2024
Published Online: Dec. 31, 2024
The Author Email: