Chinese Journal of Lasers, Volume. 48, Issue 1, 0100001(2021)
Research Progress in Brillouin Optical Correlation Domain Analysis Technology
[4] Motil A, Bergman A, Tur M. State of the art of Brillouin fiber-optic distributed sensing[J]. Optics & Laser Technology, 78, 81-103(2016).
[5] Barrias A, Casas J R, Villalba S. A review of distributed optical fiber sensors for civil engineering applications[J]. Sensors, 16, 748(2016).
[10] Li B, Luo L Q, Yu Y F et al. Dynamic strain measurement using small gain stimulated Brillouin scattering in STFT-BOTDR[J]. IEEE Sensors Journal, 17, 2718-2724(2017).
[11] Ma Z, Zhang M J, Liu Y et al. Incoherent Brillouin optical time-domain reflectometry with random state correlated Brillouin spectrum[J]. IEEE Photonics Journal, 7, 6100407(2015).
[12] Shimizu K, Horiguchi T, Koyamada Y et al. Coherent self-heterodyne detection of spontaneously Brillouin-scattered light waves in a single-mode fiber[J]. Optics Letters, 18, 185-187(1993).
[13] Wang F, Zhan W W, Zhang X P et al. Improvement of spatial resolution for BOTDR by iterative subdivision method[J]. Journal of Lightwave Technology, 31, 3663-3667(2013).
[17] Hu J, Zhang X P, Yao Y G et al. A BOTDA with break interrogation function over 72 km sensing length[J]. Optics Express, 21, 145-153(2013).
[18] Xu P B, Dong Y K, Zhang J W et al. Bend-insensitive distributed sensing in singlemode-multimode-singlemode optical fiber structure by using Brillouin optical time-domain analysis[J]. Optics Express, 23, 22714-22722(2015).
[19] Dong Y K, Ba D X, Jiang T F et al. High-spatial-resolution fast BOTDA for dynamic strain measurement based on differential double-pulse and second-order sideband of modulation[J]. IEEE Photonics Journal, 5, 2600407(2013).
[20] Hotate K. Recent achievements in BOCDA/BOCDR[C]//13th IEEE Sensors Conference, November 2-5, 2014. Valencia, Spain., 14862415(2014).
[21] Lee H, Hayashi N, Mizuno Y et al. Slope-assisted Brillouin optical correlation-domain reflectometry: proof of concept[J]. IEEE Photonics Journal, 8, 6802807(2016).
[22] Mizuno Y, Hayashi N, Fukuda H et al. Ultrahigh-speed distributed Brillouin reflectometry[J]. Light: Science & Applications, 5, e16184(2016).
[23] Mizuno Y, Zou W W, He Z Y et al. Proposal of Brillouin optical correlation-domain reflectometry (BOCDR)[J]. Optics Express, 16, 12148-12153(2008).
[25] Hotate K, Tanaka M. Distributed fiber Brillouin strain sensing with 1-cm spatial resolution by correlation-based continuous-wave technique[J]. IEEE Photonics Technology Letters, 14, 179-181(2002).
[26] Ong S S L, Hotate K. Dynamic strain measurement at 50 Hz using a Brillouin optical correlation domain analysis based on fiber optic sensor[C]//CLEO/Pacific Rim 2003. The 5th Pacific Rim Conference on Lasers and Electro-Op, 7993564(2003).
[27] Yamauchi T, Hotate K. Distributed and dynamic strain measurement by BOCDA with time-division pump-probe generation scheme[C]//Conference on Lasers and Electro-Optics, 2004. May 16-21, 2004, San Francisco, CA, USA., 8281648(2004).
[28] Zadok A, Antman Y, Primerov N et al. Random-access distributed fiber sensing[J]. Laser & Photonics Reviews, 6, L1-L5(2012).
[29] Song K Y, Hotate K. Distributed fiber strain sensor with 1-kHz sampling rate based on Brillouin optical correlation domain analysis[J]. IEEE Photonics Technology Letters, 19, 1928-1930(2007).
[30] Mizuno Y, He Z Y, Hotate K. Measurement range enlargement in Brillouin optical correlation-domain reflectometry based on temporal gating scheme[J]. Optics Express, 17, 9040-9046(2009).
[31] Boyd R W[M]. Nonlinear optics(2007).
[32] Agrawal G P[M]. Nonlinear fiber optics(2007).
[33] Hotate K, Hasegawa T. Measurement of Brillouin gain spectrum distribution along an optical fiber using a correlation-based technique: proposal, experiment and simulation[J]. IEICE Transactions on Electronics, 83, 405-412(2000).
[34] Horiguchi T, Shimizu K, Kurashima T et al. Development of a distributed sensing technique using Brillouin scattering[J]. Journal of Lightwave Technology, 13, 1296-1302(1995).
[37] Agrawal G P, Agrawal Govind P[M]. 非线性光纤光学原理及应用, 245-265(2010).
[M]. Principles and applications of nonlinear fiber optics, 245-265(2010).
[39] Alahbabi M N, Cho Y T, Newson T P. 150-km-range distributed temperature sensor based on coherent detection of spontaneous Brillouin backscatter and in-line Raman amplification[J]. Journal of the Optical Society of America B, 22, 1321-1324(2005).
[40] Zadok A, Antman Y, Primerov N et al. Random-access distributed fiber sensing[J]. Laser & Photonics Reviews, 6, L1-L5(2012).
[41] Denisov A, Soto M A, Thévenaz L. Going beyond 1000000 resolved points in a Brillouin distributed fiber sensor: theoretical analysis and experimental demonstration[J]. Light, Science & Applications, 5, e16074(2016).
[43] London Y, Antman Y, Preter E et al. Brillouin optical correlation domain analysis addressing 440000 resolution points[J]. Journal of Lightwave Technology, 34, 4421-4429(2016).
[44] Song K Y, He Z Y, Hotate K. Distributed strain measurement with millimeter-order spatial resolution based on Brillouin optical correlation domain analysis[J]. Optics Letters, 31, 2526-2528(2006).
[45] Wang Y H, Zhang M J, Zhang J Z et al. Millimeter-level-spatial-resolution Brillouin optical correlation-domain analysis based on broadband chaotic laser[J]. Journal of Lightwave Technology, 37, 3706-3712(2019).
[46] Song K Y, He Z Y, Hotate K. Effects of intensity modulation of light source on Brillouin optical correlation domain analysis[J]. Journal of Lightwave Technology, 25, 1238-1246(2007).
[48] Hotate K. A correlation-based continuous-wave technique for measuring Brillouin gain spectrum distribution along an optical fiber with centimeter-order spatial resolution[J]. Proceedings of SPIE, 4185, 418509(2000).
[49] Song K Y, Hotate K. Enlargement of measurement range in a Brillouin optical correlation domain analysis system using double lock-in amplifiers and a single-sideband modulator[J]. IEEE Photonics Technology Letters, 18, 499-501(2006).
[50] Kim Y H, Lee K, Song K Y. Brillouin optical correlation domain analysis with more than 1 million effective sensing points based on differential measurement[J]. Optics Express, 23, 33241-33248(2015).
[51] Song K Y, He Z Y, Hotate K. Brillouin optical correlation domain analysis system with kilometer measurement range based on intensity modulation scheme[C]//2006 Conference on Lasers and Electro-Optics and 2006 Quantum Electronics, 1-2(2006).
[52] Song K Y, He Z Y, Hotate K. Optimization of Brillouin optical correlation domain analysis system based on intensity modulation scheme[J]. Optics Express, 14, 4256-4263(2006).
[53] Wang B, Fan X Y, Fu Y X et al. Enhancement of strain/temperature measurement range and spatial resolution in Brillouin optical correlation domain analysis based on convexity extraction algorithm[J]. IEEE Access, 7, 32128-32136(2019).
[54] Lee H, Mizuno Y, Nakamura K. Detection of 2-mm-long strained section in silica fiber using slope-assisted Brillouin optical correlation-domain reflectometry[J]. Japanese Journal of Applied Physics, 57, 020303(2018).
[55] Mizuno Y, He Z Y, Hotate K. Measurement range enlargement in Brillouin optical correlation-domain reflectometry based on temporal gating scheme[J]. Optics Express, 17, 9040-9046(2009).
[56] Wang B, Fan X Y, Liu Q W et al. Increasing effective sensing points of Brillouin optical correlation domain analysis using four-wave-mixing process[J]. Proceedings of SPIE, 1032, 103238K(2017).
[59] Jeong J H, Lee S B, Jhon Y M et al. Extension of measurement range in Brillouin optical correlation domain analysis by pump-probe switching[J]. Applied Physics B, 116, 91-96(2014).
[60] Hotate K, Arai H. Enlargement of measurement range of simplified BOCDA fiber-optic distributed strain sensing system using a temporal gating scheme[J]. Proceedings of SPIE, 5855, 184-187(2005).
[61] Hotate K, Arai H, Song K Y. Range-enlargement of simplified Brillouin optical correlation domain analysis based on a temporal gating scheme[J]. SICE Journal of Control, Measurement, and System Integration, 1, 271-274(2008).
[62] Ryu G, Kim G T, Song K Y et al. Brillouin optical correlation domain analysis enhanced by time-domain data processing for concurrent interrogation of multiple sensing points[J]. Journal of Lightwave Technology, 35, 5311-5316(2017).
[63] Ryu G, Kim G T, Song K Y et al. BOCDA system enhanced by concurrent interrogation of multiple correlation peaks with a 10 km sensing range[C]//2017 25th Optical Fiber Sensors Conference (OFS), April 24-28, 2017, Jeju, South Korea., 1-4(2017).
[65] Antman Y, Levanon N, Zadok A. Low-noise delays from dynamic Brillouin gratings based on perfect Golomb coding of pump waves[J]. Optics Letters, 37, 5259-5261(2012).
[66] Ba D X, Li Y, Yan J L et al. Phase-coded Brillouin optical correlation domain analysis with 2-mm resolution based on phase-shift keying[J]. Optics Express, 27, 36197-36205(2019).
[67] Matsumoto M, Akai S. High-spatial-resolution Brillouin optical correlation domain analysis using short-pulse optical sources[J]. Journal of Lightwave Technology, 37, 6007-6014(2019).
[69] Denisov A, Soto M A, Thevenaz L. Time gated phase-correlation distributed Brillouin fiber sensor[J]. Proceedings of SPIE, 8794, 87943I(2013).
[71] Golomb S W. Two-valued sequences with perfect periodic autocorrelation[J]. IEEE Transactions on Aerospace and Electronic Systems, 28, 383-386(1992).
[72] Antman Y, Yaron L, Langer T et al. Variable delay of Gbit/s data using coded Brillouin dynamic gratings[J]. Proceedings of SPIE, 8998, 89980W(2014).
[73] Elooz D, Antman Y, Zadok A. Combined time-domain and correlation-domain Brillouin analysis with 1600 meters range and 2 centimeters resolution[J]. Proceedings of SPIE, 9157, 91576O(2014).
[74] Denisov A, Soto M A. 9157: 9157D2[J]. Thevenaz L. 1000000 resolved points along a Brillouin distributed fibre sensor. Proceedings of SPIE(2014).
[76] Levanon N, Cohen I, Arbel N et al. Non-coherent pulse compression-aperiodic and periodic waveforms[J]. IET Radar, Sonar & Navigation, 10, 216-224(2016).
[77] Shlomi O, Preter E, Ba D et al. Double-pulse pair Brillouin optical correlation-domain analysis[J]. Optics Express, 24, 26867-26876(2016).
[79] Preter E, Ba D X, London Y et al. High-resolution Brillouin optical correlation domain analysis with no spectral scanning[J]. Optics Express, 24, 27253-27267(2016).
[80] Cohen R, London Y, Antman Y et al. Few millimeter-resolution Brillouin optical correlation domain analysis using amplified-spontaneous-emission pump and signal waves[J]. Proceedings of SPIE, 9157, 91576B(2014).
[81] Santagiustina M, Ursini L. Dynamic Brillouin gratings permanently sustained by chaotic lasers[J]. Optics Letters, 37, 893-895(2012).
[82] Zhang J Z, Li Z P, Zhang M J et al. Characterization of Brillouin dynamic grating based on chaotic laser[J]. Optics Communications, 396, 210-215(2017).
[83] Zhang J Z, Zhang M T, Zhang M J et al. Chaotic Brillouin optical correlation-domain analysis[J]. Optics Letters, 43, 1722-1725(2018).
[84] Wang Y C, Kong L Q, Wang A B et al. Coherence length tunable semiconductor laser with optical feedback[J]. Applied Optics, 48, 969-973(2009).
[85] Zhang J Z, Feng C K, Zhang M J et al. Brillouin optical correlation domain analysis based on chaotic laser with suppressed time delay signature[J]. Optics Express, 26, 6962-6972(2018).
[86] Zhang J, Wang Y, Zhang M et al. Time-gated chaotic Brillouin optical correlation domain analysis[J]. Optics Express, 26, 17597-17607(2018).
[87] Qiao L, Lü T, Xu Y et al. Generation of flat wideband chaos based on mutual injection of semiconductor lasers[J]. Optics Letters, 44, 5394-5397(2019).
[88] Yang Q, Qiao L J, Zhang M J et al. Generation of a broadband chaotic laser by active optical feedback loop combined with a high nonlinear fiber[J]. Optics Letters, 45, 1750-1753(2020).
[89] Zhang M J, Xu Y H, Zhao T et al. A hybrid integrated short-external-cavity chaotic semiconductor laser[J]. IEEE Photonics Technology Letters, 29, 1911-1914(2017).
[90] Dong X Y, Wang A B, Zhang J G et al. Combined attenuation and high-resolution fault measurements using Chaos-OTDR[J]. IEEE Photonics Journal, 7, 684006(2015).
[91] Zhang C Y, Kishi M, Hotate K. 5,000 points/s high-speed random accessibility for dynamic strain measurement at arbitrary multiple points along a fiber by Brillouin optical correlation domain analysis[J]. Applied Physics Express, 8, 042501(2015).
[92] Wang B, Fan X Y, Fu Y X et al. Dynamic strain measurement with kHz-level repetition rate and centimeter-level spatial resolution based on Brillouin optical correlation domain analysis[J]. Optics Express, 26, 6916-6928(2018).
[93] Wang Y H, Zhao L, Zhang M J et al. Dynamic strain measurement by a single-slope-assisted chaotic Brillouin optical correlation-domain analysis[J]. Optics Letters, 45, 1822-1825(2020).
[94] Zhao L, Wang Y H, Hu X X et al. Effect of chaotic time delay signature on Brillouin gain spectrum in the slope-assisted chaotic BOCDA[J]. Optics Express, 28, 18189-18201(2020).
Get Citation
Copy Citation Text
Xinxin Hu, Yahui Wang, Le Zhao, Qian Zhang, Mingjiang Zhang, Jianzhong Zhang, Lijun Qiao, Tao Wang, Shaohua Gao. Research Progress in Brillouin Optical Correlation Domain Analysis Technology[J]. Chinese Journal of Lasers, 2021, 48(1): 0100001
Category: reviews
Received: Jul. 22, 2020
Accepted: Sep. 4, 2020
Published Online: Jan. 12, 2021
The Author Email: Zhang Mingjiang (zhangmingjiang@tyut.edu.cn)