Acta Photonica Sinica, Volume. 52, Issue 8, 0816002(2023)
Dielectric Properties and Interface Characteristics of ZrSSe,HfSSe and Their 2D Heterojunctions
[1] NOVOSELOV K S, GEIM A K, MOROZOV S V et al. Electric field effect in atomically thin carbon films[J]. Science, 306, 666-669(2004).
[2] WOOLSTON C. Taking graphene out of the laboratory and into the real world[J]. Nature, 590, 684-685(2021).
[3] SUN Xianxian, HUANG Chuanjin, WANG Lidong et al. Recent progress in graphene/polymer nanocomposites[J]. Advanced Materials, 33, 2001105(2021).
[4] KIM H, CHOI Y, LEWANDOWSKI C et al. Evidence for unconventional superconductivity in twisted trilayer graphene[J]. Nature, 606, 494-500(2022).
[5] BALANDIN A A. Phononics of graphene and related materials[J]. ACS Nano, 14, 5170-5178(2020).
[6] WANG Yu, LI Sisi, YANG Haiyan et al. Progress in the functional modification of graphene/graphene oxide: A review[J]. RSC Advances, 10, 15328-15345(2020).
[7] LI Ruiping, CHENG Yingchun, HUANG Wei. Recent progress of Janus 2D transition metal chalcogenides: from theory to experiments[J]. Small, 14, 1802091(2018).
[8] LI Xiaobo, CHEN Chao, YANG Yang et al. 2D re-based transition metal chalcogenides: progress, challenges, and opportunities[J]. Advanced Science, 7, 2002320(2020).
[9] HSIAO F H, CHUNG Chengchu, CHIANG C H et al. Using exciton/trion dynamics to spatially monitor the catalytic activities of MoS2 during the hydrogen evolution reaction[J]. ACS Nano, 16, 4298-4307(2022).
[10] YANG J, MOHMAD A R, WANG Yan et al. Ultrahigh-current-density niobium disulfide catalysts for hydrogen evolution[J]. Nature Materials, 18, 1309-1314(2019).
[11] CHERUSSERI J, CHOUDHARY N, KUMAR K S et al. Recent trends in transition metal dichalcogenide based supercapacitor electrodes[J]. Nanoscale Horizons, 4, 840-858(2019).
[12] VIKRAMAN D, HUSSAIN S, RABANI I et al. Engineering MoTe2 and Janus SeMoTe nanosheet structures: first-principles roadmap and practical uses in hydrogen evolution reactions and symmetric supercapacitors[J]. Nano Energy, 87, 106161(2021).
[13] WAN Jing, HAN Yang, SHI Yang et al. Ultra-thin solid electrolyte interphase evolution and wrinkling processes in molybdenum disulfide-based lithium-ion batteries[J]. Nature Communications, 10, 1-10(2019).
[14] WANG Jianbiao, OKABE J, KOMINE Y et al. The optimized interface engineering of VS2 as cathodes for high performance all-solid-state lithium-ion battery[J]. Science China Technological Sciences, 65, 1859-1866(2022).
[15] SU Jianwei, LIU Guiheng, LIU Lixin et al. Recent advances in 2D group VB transition metal chalcogenides[J]. Small, 17, 2005411(2021).
[16] DUAN Yangping, ZHAO Xia, SUN Miaomiao et al. Research advances in the synthesis, application, assembly, and calculation of janus materials[J]. Industrial & Engineering Chemistry Research, 60, 1071-1095(2021).
[17] LU Aangyu, ZHU Hanyu, XIAO Jun et al. Janus monolayers of transition metal dichalcogenides[J]. Nature Nanotechnology, 12, 744-749(2017).
[18] YANG Xiaoyong, SINGH D, XU Zhitong et al. An emerging Janus MoSeTe material for potential applications in optoelectronic devices[J]. Journal of Materials Chemistry C, 7, 12312-12320(2019).
[19] RIIS-JENSEN A C, DEILMANN T, OLSEN T et al. Classifying the electronic and optical properties of Janus monolayers[J]. ACS Nano, 13, 13354-13364(2019).
[20] XIA Congxin, XIONG Wenqi, DU Juan et al. Universality of electronic characteristics and photocatalyst applications in the two-dimensional Janus transition metal dichalcogenides[J]. Physical Review B, 98, 165424(2018).
[21] ZHANG Jing, JIA Shuai, KHOLMANOV I et al. Janus monolayer transition-metal dichalcogenides[J]. ACS Nano, 11, 8192-8198(2017).
[22] YIN Wenjin, WEN Bo, NIE Gouzheng et al. Tunable dipole and carrier mobility for a few layer Janus MoSSe structure[J]. Journal of Materials Chemistry C, 6, 1693-1700(2018).
[23] PENG Rui, MA Yandong, ZHANG Shuai et al. Valley polarization in Janus single-layer MoSSe via magnetic doping[J]. The Journal of Physical Chemistry Letters, 9, 3612-3617(2018).
[24] WANG Jun, SHU Haibo, ZHAO Tianfeng et al. Intriguing electronic and optical properties of two-dimensional Janus transition metal dichalcogenides[J]. Physical Chemistry Chemical Physics, 20, 18571-18578(2018).
[25] JIN Hao, WANG Tao, GONG Zhirui et al. Prediction of an extremely long exciton lifetime in a Janus-MoSTe monolayer[J]. Nanoscale, 10, 19310-19315(2018).
[26] LIANG Yan, LI Jianwei, JIN Hao et al. Photoexcitation dynamics in Janus-MoSSe/WSe2 heterobilayers: ab initio time-domain study[J]. The Journal of Physical Chemistry Letters, 9, 2797-2802(2018).
[27] GUO Sandong. Phonon transport in Janus monolayer MoSSe: a first-principles study[J]. Physical Chemistry Chemical Physics, 20, 7236-7242(2018).
[28] YAGMURCUKARDES M, QIN Y, OZEN S et al. Quantum properties and applications of 2D Janus crystals and their superlattices[J]. Applied Physics Reviews, 7, 011311(2020).
[29] MAGHIRANG A B, HUANG Z Q, VILLAOS R A B et al. Predicting two-dimensional topological phases in Janus materials by substitutional doping in transition metal dichalcogenide monolayers[J]. npj 2D Materials and Applications, 3, 1-8(2019).
[30] ZHAO X W, QIU B, HU G C et al. Transition-metal doping/adsorption induced valley polarization in Janus WSSe: first-principles calculations[J]. Applied Surface Science, 490, 172-177(2019).
[31] DONG Liang, LOU Jun, SHENOY V B. Large in-plane and vertical piezoelectricity in Janus transition metal dichalchogenides[J]. ACS Nano, 11, 8242-8248(2017).
[32] YAGMURCUKARDES M, SEVIK C, PEETERS F M. Electronic, vibrational, elastic, and piezoelectric properties of monolayer Janus MoSTe phases: a first-principles study[J]. Physical Review B, 100, 045415(2019).
[33] JIN Cui, TANG Xiao, TAN Xin et al. A Janus MoSSe monolayer: a superior and strain-sensitive gas sensing material[J]. Journal of Materials Chemistry A, 7, 1099-1106(2019).
[34] ZHAO Qiyi, GUO Yaohui, SI Keyu et al. Elastic, electronic, and dielectric properties of bulk and monolayer ZrS2, ZrSe2, HfS2, HfSe2 from van der Waals density‐functional theory[J]. Physica Status Solidi (b), 254, 1700033(2017).
[35] SINGH D, AHUJA R. Two-dimensional perovskite/HfS2 van der Waals heterostructure as an absorber material for photovoltaic applications[J]. ACS Applied Energy Materials, 5, 2300-2307(2022).
[36] ZHU Bicheng, TAN Haiyan, FAN Jiajie et al. Tuning the strength of built-in electric field in 2D/2D g-C3N4/SnS2 and g-C3N4/ZrS2 S-scheme heterojunctions by nonmetal doping[J]. Journal of Materiomics, 7, 988-997(2021).
[37] KRESSE G, FURTHMÜLLER J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set[J]. Computational Materials Science, 6, 15-50(1996).
[38] KRESSE G, FURTHMÜLLER J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set[J]. Physical Review B, 54, 11169(1996).
[39] GIANNOZZI P, BARONI S, BONINI N et al. Quantum espresso: a modular and open-source software project for quantum simulations of materials[J]. Journal of Physics: Condensed Matter, 21, 395502(2009).
[40] KRESSE G, JOUBERT D. From ultrasoft pseudopotentials to the projector augmented-wave method[J]. Physical Review B, 59, 1758(1999).
[41] PERDEW J P, BURKE K, ERNZERHOF M. Generalized gradient approximation made simple[J]. Physical Review Letters, 77, 3865(1996).
[42] MONKHORST H J, PACK J D. Special points for Brillouin-zone integrations[J]. Physical Review B, 13, 5188(1976).
[43] DION M, RYDBERG H, SCHRÖDER E et al. Van der Waals density functional for general geometries[J]. Physical Review Letters, 92, 246401(2004).
[44] ROMÁN-PÉREZ G, SOLER J M. Efficient implementation of a van der Waals density functional: application to double-wall carbon nanotubes[J]. Physical Review Letters, 103, 096102(2009).
[45] KLIMEŠ J, BOWLER D R, MICHAELIDES A. Van der Waals density functionals applied to solids[J]. Physical Review B, 83, 195131(2011).
[46] GUO Sandong, LI Yongfeng, Guo Xiaoshu. Predicted Janus monolayer ZrSSe with enhanced n-type thermoelectric properties compared with monolayer ZrS2[J]. Computational Materials Science, 161, 16-23(2019).
[47] HOAT D M, NASERI M, HIEU N N et al. A comprehensive investigation on electronic structure, optical and thermoelectric properties of the HfSSe Janus monolayer[J]. Journal of Physics and Chemistry of Solids, 144, 109490(2020).
[48] VU T V, TONG H D, TRAN D P et al. Electronic and optical properties of Janus ZrSSe by density functional theory[J]. RSC Advances, 9, 41058-41065(2019).
[49] DUFFY J A. Trends in energy gaps of binary compounds: an approach based upon electron transfer parameters from optical spectroscopy[J]. Journal of Physics C: Solid State Physics, 13, 2979(1980).
[50] CARVALHO A, RIBEIRO R M, NETO A H C. Band nesting and the optical response of two-dimensional semiconducting transition metal dichalcogenides[J]. Physical Review B, 88, 115205(2013).
[51] ZHAO Qiyi, GUO Yanhui, ZHOU Yixuan et al. Flexible and anisotropic properties of monolayer MX2 (M= Tc and Re; X= S, Se)[J]. The Journal of Physical Chemistry C, 121, 23744-23751(2017).
[52] GAJDOŠ M, HUMMER K, KRESSE G et al. Linear optical properties in the projector-augmented wave methodology[J]. Physical Review B, 73, 045112(2006).
[53] LUCARINI V, SAARINEN J J, PEIPONEN K E et al. Kramers-Kronig relations in optical materials research[M]. Springer Science & Business Media(2005).
[54] LUO Ruichun, XU Wenwu, ZHANG Yongzheng et al. Van der Waals interfacial reconstruction in monolayer transition-metal dichalcogenides and gold heterojunctions[J]. Nature Communications, 11, 1-12(2020).
[55] HU Wei, YANG Jinlong. First-principles study of two-dimensional van der Waals heterojunctions[J]. Computational Materials Science, 112, 518-526(2016).
Get Citation
Copy Citation Text
Gonghe DU, Xudong HU, Qianwen YANG, Yonggang XU, Zhaoyu REN, Qiyi ZHAO. Dielectric Properties and Interface Characteristics of ZrSSe,HfSSe and Their 2D Heterojunctions[J]. Acta Photonica Sinica, 2023, 52(8): 0816002
Category:
Received: Dec. 30, 2022
Accepted: Mar. 29, 2023
Published Online: Sep. 26, 2023
The Author Email: Qiyi ZHAO (qiyi_xiyouphy@163.com)