Computer Applications and Software, Volume. 42, Issue 4, 237(2025)

MA_MULTIRESUNET: A SEGMENTATION METHOD OF PULMONARY NODULES IN CT IMAGES BASED ON IMPROVED MULTIRESUNET

Lu Wei, Shuai Renjun, and Zhao Chen
Author Affiliations
  • College of Computer Science and Technology, Nanjing Tech University, Nanjing 211816, Jiangsu, China
  • show less
    References(24)

    [1] [1] Farag A A, Graham J, Elshazly S, et al. Data-Driven lung nodule models for robust nodule detection in chest CT[C]//2010 20th International Conference on Pattern Recognition, 2010.

    [2] [2] Kostis W J, Reeves A P, Yankelevitz D F, et al. Three-dimensional segmentation and growth-rate estimation of small pulmonary nodules in helical CT images[J]. IEEE Transactions on Medical Imaging, 2003, 22(10): 1259-1274.

    [4] [4] Liu H, Geng F H, Guo Q, et al. A fast weak-supervised pulmonary nodule segmentation method based on modified self-adaptive FCM algorithm[J]. Soft Computing, 2018, 22 (12): 3983-3995.

    [5] [5] Zhao C, Shuai R, Ma L, et al. Segmentation of dermoscopy images based on deformable 3D convolution and ResU-NeXt ++[J]. Medical & Biological Engineering & Computing, 2021, 59: 1815-1832.

    [6] [6] Zhao C, Shuai R, Ma L, et al. Dermoscopy image classification based on StyleGAN and DenseNet201[J]. IEEE Access, 2021, 9: 8659-8679.

    [7] [7] Ronneberger O, Fischer P, Brox T. U-Net: Convolutional networks for biomedical image segmentation[C]//Medical Image Computing and Computer-Assisted Intervention-MIC-CAI 2015, 2015.

    [8] [8] Shelhamer E, Long J, Darrell T. Fully convolutional networks for semantic segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(4): 640 -651.

    [9] [9] Oktay O, Schlemper J, Folgoc L L, et al. Attention U-Net: Learning where to look for the pancreas[EB]. arXiv: 1804.03999, 2018.

    [10] [10] Zhou Z, Siddiquee M M R, Tajbakhsh N, et al. UNet ++: A nested U-Net architecture for medical image segmentation[C]//Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support, 2018.

    [11] [11] Ibtehaz N, Rahman M S. MultiResUNet: Rethinking the UNet architecture for multimodal biomedical image segmentation[J]. Neural Networks, 2020, 121: 74-87.

    [12] [12] Tong G F, Li Y, Chen H R, et al. Improved U-NET network for pulmonary nodules segmentation[J]. Optik, 2018, 174: 460-469.

    [13] [13] Wu B T, Zhou Z, Wang J W, et al. Joint learning for pulmonary nodule segmentation, attributes and malignancy prediction[C]//2018 IEEE 15th International Symposium on Biomedical Imaging, 2018.

    [14] [14] iek , Abdulkadir A, Lienkamp S S, et al. 3D U-Net: Learning dense volumetric segmentation from sparse annotation[C]//Medical Image Computing and Computer-Assisted Intervention-MICCAI 2016, 2016.

    [15] [15] Cao H C, Liu H, Song E M, et al. Dual-branch residual network for lung nodule segmentation[J]. Applied Soft Computing, 2020, 86: 105934.

    [16] [16] He K M, Zhang X Y, Ren S Q, et al. Deep residual learning for image recognition[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016.

    [17] [17] Singadkar G, Mahajan A, Thakur M, et al. Deep deconvolutional residual network based automatic lung nodule segmentation[J]. Journal of Digital Imaging, 2020, 33: 678-684.

    [18] [18] Keetha N V, Babu P, Annavarapu C. U-Det: A modified UNet architecture with bidirectional feature network for lung nodule segmentation[EB]. arXiv: 2003.09293, 2020.

    [19] [19] Zhang H, Zu K, Lu J, et al. EPSANet: An efficient pyramid squeeze attention block on convolutional neural network[EB]. arXiv: 2105.14447, 2021.

    [20] [20] Gu R, Wang G T, Song T, et al. CA-Net: Comprehensive attention convolutional neural networks for explainable medical image segmentation[J]. IEEE Transactions on Medical Imaging, 2021, 40(2): 699-711.

    [21] [21] Woo S, Park J, Lee J Y, et al. CBAM: Convolutional Block Attention Module[EB]. arXiv: 1807.06521, 2018.

    [22] [22] Han F F, Zhang G P, Wang H F, et al. A texture feature analysis for diagnosis of pulmonary nodules using LIDC-IDRI database[C]//2013 IEEE International Conference on Medical Imaging Physics and Engineering, 2013.

    [23] [23] Mukherjee S, Huang X J, Bhagalia R R. Lung nodule segmentation using deep learned prior based graph cut[C]//2017 IEEE 14th International Symposium on Biomedical Imaging (ISBI 2017), 2017.

    [24] [24] Jain S, Indora S, Atal D K. Lung nodule segmentation using salp shuffled shepherd optimization algorithm-based generative adversarial network[J]. Computers in Biology and Medicine, 2021, 137: 104811.

    [25] [25] Maqsood M, Yasmin S, Mehmood I, et al. An efficient DANet architecture for lung nodule segmentation[J]. Mathematics, 2021, 9(13): 1457.

    Tools

    Get Citation

    Copy Citation Text

    Lu Wei, Shuai Renjun, Zhao Chen. MA_MULTIRESUNET: A SEGMENTATION METHOD OF PULMONARY NODULES IN CT IMAGES BASED ON IMPROVED MULTIRESUNET[J]. Computer Applications and Software, 2025, 42(4): 237

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Nov. 11, 2021

    Accepted: Aug. 25, 2025

    Published Online: Aug. 25, 2025

    The Author Email:

    DOI:10.3969/j.issn.1000-386x.2025.04.034

    Topics