Chinese Journal of Lasers, Volume. 47, Issue 5, 0500009(2020)
Research Progress on Mid-Infrared Ultrafast Fiber Laser
[1] Ren X Y, Dai H, Li D T et al. Mid-infrared electro-optic dual-comb spectroscopy with feedforward frequency stepping[J]. Optics Letters, 45, 776-779(2020).
[2] Hao Q, Zhu G S, Yang S et al. Mid-infrared transmitter and receiver modules for free-space optical communication[J]. Applied Optics, 56, 2260-2264(2017).
[3] Huang K, Gan J W, Zeng J et al. Observation of spectral mode splitting in a pump-enhanced ring cavity for mid-infrared generation[J]. Optics Express, 27, 11766-11775(2019).
[4] Huang K, Gu X R, Zhou Q et al. Efficient generation of mid-infrared photons at 3.16 μm by coincidence frequency downconversion[J]. Laser Physics, 23, 045401(2013).
[5] Nelson L E, Ippen E P, Haus H A. Broadly tunable sub-500 fs pulses from an additive-pulse mode-locked thulium-doped fiber ring laser[J]. Applied Physics Letters, 67, 19-21(1995).
[6] Sharp R C, Spock D E, Pan N et al. 190-fs passively mode-locked thulium fiber laser with a low threshold[J]. Optics Letters, 21, 881-883(1996).
[7] Kivisto S, Hakulinen T, Guina M et al. Tunable Raman soliton source using mode-locked Tm-Ho fiber laser[J]. IEEE Photonics Technology Letters, 19, 934-936(2007).
[8] Wang Q, Geng J, Luo T et al. Mode-locked 2 μm laser with highly thulium-doped silicate fiber[J]. Optics Letters, 34, 3616-3618(2009).
[11] Rudy C W. Digonnet M J F, Byer R L, et al. Thulium-doped germanosilicate mode-locked fiber lasers. [C]∥Lasers, Sources, and Related Photonic Devices, San Diego, California. Washington, D.C.: OSA, FTH4A, 4(2012).
[12] Huang C Y, Wang C, Shang W et al. Developing high energy dissipative soliton fiber lasers at 2 micron[J]. Scientific Reports, 5, 13680(2015).
[13] Akosman A E, Sander M Y. Low noise, mode-locked 253 MHz Tm/Ho fiber laser with core pumping at 790 nm[J]. IEEE Photonics Technology Letters, 28, 1878-1881(2016).
[14] Tolstik N, Sorokin E, Bugar I et al. Compact Diode-pumped dispersion-managed SESAM-mode-locked Ho∶fiber Laser. [C]∥High-Brightness Sources and Light-Driven Interactions, Long Beach, California. Washington, D.C.: OSA, MM6C, 4(2016).
[15] Wang Y, Tang Y L, Yan S et al. High-power mode-locked 2 μm multimode fiber laser[J]. Laser Physics Letters, 15, 085101(2018).
[17] Sotor J, Sobon G, Kowalczyk M et al. Ultrafast thulium-doped fiber laser mode locked with black phosphorus[J]. Optics Letters, 40, 3885-3888(2015).
[18] Wang J Z, Liang X Y, Hu G H et al. 152 fs nanotube-mode-locked thulium-doped all-fiber laser[J]. Scientific Reports, 6, 28885(2016).
[19] Jeong H, Choi S Y, Kim M H et al. All-fiber Tm-doped soliton laser oscillator with 6 nJ pulse energy based on evanescent field interaction with monoloayer graphene saturable absorber[J]. Optics Express, 24, 14152-14158(2016).
[20] Sotor J, Bogusławski J, Martynkien T et al. All-polarization-maintaining, stretched-pulse Tm-doped fiber laser, mode-locked by a graphene saturable absorber[J]. Optics Letters, 42, 1592-1595(2017).
[21] Pawliszewska M, Martynkien T, Przewłoka A et al. Dispersion-managed Ho-doped fiber laser mode-locked with a graphene saturable absorber[J]. Optics Letters, 43, 38-41(2018).
[22] Lee J, Koo J, Lee J et al. All-fiberized, femtosecond laser at 1912 nm using a bulk-like MoSe2 saturable absorber[J]. Optical Materials Express, 7, 2968-2979(2017).
[23] Wang J T, Jiang Z K, Chen H et al. Magnetron-sputtering deposited WTe2 for an ultrafast thulium-doped fiber laser[J]. Optics Letters, 42, 5010-5013(2017).
[24] Pawliszewska M, Ge Y Q, Li Z J et al. Fundamental and harmonic mode-locking at 21 μm with black phosphorus saturable absorber[J]. Optics Express, 25, 16916-16921(2017).
[26] Kang Z, Liu M Y, Tang C Y et al. Microfiber coated with gold nanorods as saturable absorbers for 2 μm femtosecond fiber lasers[J]. Optical Materials Express, 8, 3841-3850(2018).
[27] Wang T, Jin X X, Yang J et al. Oxidation-resistant black phosphorus enable highly ambient-stable ultrafast pulse generation at a 2 μm Tm/Ho-doped fiber laser[J]. ACS Applied Materials & Interfaces, 11, 36854-36862(2019).
[28] Engelbrecht M, Haxsen F, Ruehl A et al. Ultrafast thulium-doped fiber-oscillator with pulse energy of 43 n[J]. Optics Letters, 33, 690-692(2008).
[29] Tang Y X, Chong A, Wise F W. Generation of 8 nJ pulses from a normal-dispersion thulium fiber laser[J]. Optics Letters, 40, 2361-2364(2015).
[30] Gao C X, Wang Z Q, Luo H et al. High energy all-fiber Tm-doped femtosecond soliton laser mode-locked by nonlinear polarization rotation[J]. Journal of Lightwave Technology, 35, 2988-2993(2017).
[31] Voropaev V S, Donodin A I, Voronets A I et al. High-power passively mode-locked thulium-doped all-fiber ring laser with nonlinearity and dispersion management. [C]∥2018 International Conference Laser Optics (ICLO), June 4-8, 2018. St. Petersburg: IEEE, 18-18(2018).
[32] Sun B, Luo J Q, Ng B P et al. Dispersion-compensation-free femtosecond Tm-doped all-fiber laser with a 248 MHz repetition rate[J]. Optics Letters, 41, 4052-4055(2016).
[33] Sobon G, Sotor J, Martynkien T et al. Ultra-broadband dissipative soliton and noise-like pulse generation from a normal dispersion mode-locked Tm-doped all-fiber laser[J]. Optics Express, 24, 6156-6161(2016).
[35] Liao R Y, Song Y J, Chai L et al. Pulse dynamics manipulation by the phase bias in a nonlinear fiber amplifying loop mirror[J]. Optics Express, 27, 14705-14715(2019).
[36] Frerichs C, Unrau U B. Passive Q-switching and mode-locking of erbium-doped fluoride fiber lasers at 2.7 μm[J]. Optical Fiber Technology, 2, 358-366(1996).
[37] Wei C, Zhu X S, Norwood R A et al. Passively continuous-wave mode-locked Er 3+-doped ZBLAN fiber laser at 28 μm[J]. Optics Letters, 37, 3849-3851(2012).
[38] Tang P H, Qin Z P, Liu J et al. Watt-level passively mode-locked Er 3+-doped ZBLAN fiber laser at 2.8 μm[J]. Optics Letters, 40, 4855-4858(2015).
[39] Hu T, Jackson S D, Hudson D D. Ultrafast pulses from a mid-infrared fiber laser[J]. Optics Letters, 40, 4226-4228(2015).
[40] Duval S, Bernier M, Fortin V et al. Femtosecond fiber lasers reach the mid-infrared[J]. Optica, 2, 623-626(2015).
[42] Luo H Y, Li J, Xie J T et al. High average power and energy microsecond pulse generation from an erbium-doped fluoride fiber MOPA system[J]. Optics Express, 24, 29022-29032(2016).
[43] Shen Y L, Wang Y S, Chen H W et al. Wavelength-tunable passively mode-locked mid-infrared Er 3+-doped ZBLAN fiber laser[J]. Scientific Reports, 7, 14913(2017).
[44] Zhu G W, Zhu X S, Wang F Q et al. Graphene mode-locked fiber laser at 2.8 μm[J]. IEEE Photonics Technology Letters, 28, 7-10(2016).
[45] Qin Z P, Xie G Q, Zhao C J et al. Mid-infrared mode-locked pulse generation with multilayer black phosphorus as saturable absorber[J]. Optics Letters, 41, 56-59(2016).
[47] Zhao L N, Wang J R, Huang S W. Nonlinear-mirror mode-locked Er 3+∶ZBLAN fiber laser. [C]∥Laser Congress 2018 (ASSL), Boston, Massachusetts. Washington, D.C.: OSA, ATu2A, 27(2018).
[48] Li J F, Hudson D D, Liu Y et al. Efficient 2.87 μm fiber laser passively switched using a semiconductor saturable absorber mirror[J]. Optics Letters, 37, 3747-3749(2012).
[49] Yin K, Jiang T, Zheng X et al[2020-03-05]. Mid-infrared ultra-short mode-locked fiber laser utilizing topological insulator Bi2Te3 nano-sheets as the saturable absorber [2020-03-05].https:∥arxiv., org/abs/1505, 06322.
[50] Li J F, Luo H Y, Zhai B et al. Black phosphorus: a two-dimension saturable absorption material for mid-infrared Q-switched and mode-locked fiber lasers[J]. Scientific Reports, 6, 30361(2016).
[51] Zhu C H, Wang F Q, Meng Y F et al. A robust and tuneable mid-infrared optical switch enabled by bulk Dirac fermions[J]. Nature Communications, 8, 14111(2017).
[52] Antipov S, Hudson D D, Fuerbach A et al. High-power mid-infrared femtosecond fiber laser in the water vapor transmission window[J]. Optica, 3, 1373-1376(2016).
[53] Henderson-Sapir O, Jackson S D, Ottaway D J. Versatile and widely tunable mid-infrared erbium doped ZBLAN fiber laser[J]. Optics Letters, 41, 1676-1679(2016).
[54] Qin Z P, Hai T, Xie G Q et al. Black phosphorus Q-switched and mode-locked mid-infrared Er∶ZBLAN fiber laser at 3.5 μm wavelength[J]. Optics Express, 26, 8224-8231(2018).
[55] Woodward R I, Majewski M R, Jackson S D. Mode-locked dysprosium fiber laser: picosecond pulse generation from 2.97 to 3.30 μm[J]. APL Photonics, 3, 116106(2018).
[56] Wang Y C, Jobin F, Duval S et al. Ultrafast Dy 3+: fluoride fiber laser beyond 3 μm[J]. Optics Letters, 44, 395-398(2019).
[57] Rudy C W, Urbanek K E. Digonnet M J F, et al. Amplified 2-μm thulium-doped all-fiber mode-locked figure-eight laser[J]. Journal of Lightwave Technology, 31, 1809-1812(2013).
[58] Gaida C, Gebhardt M, Heuermann T et al. Ultrafast thulium fiber laser system emitting more than 1 kW of average power[J]. Optics Letters, 43, 5853-5856(2018).
[59] Stutzki F, Gaida C, Gebhardt M et al. Tm-based fiber-laser system with more than 200 MW peak power[J]. Optics Letters, 40, 9-12(2015).
[60] Gaida C, Gebhardt M, Stutzki F et al. Thulium-doped fiber chirped-pulse amplification system with 2 GW of peak power[J]. Optics Letters, 41, 4130-4133(2016).
[61] Ren Z Q, Fu Q, Xu L et al. Compact, high repetition rate, 4.2 MW peak power, 1925 nm, thulium-doped fiber chirped-pulse amplification system with dissipative soliton seed laser[J]. Optics Express, 27, 36741-36749(2019).
[62] Tan F Z, Shi H X, Sun R Y et al. 1 μJ, sub-300 fs pulse generation from a compact thulium-doped chirped pulse amplifier seeded by Raman shifted erbium-doped fiber laser[J]. Optics Express, 24, 22461-22468(2016).
[63] Sims R A, Kadwani P. Shah A S L, et al. 1 μJ, sub-500 fs chirped pulse amplification in a Tm-doped fiber system[J]. Optics Letters, 38, 121-123(2013).
[65] Imeshev G, Fermann M E. 230-kW peak power femtosecond pulses from a high power tunable source based on amplification in Tm-doped fiber[J]. Optics Express, 13, 7424-7431(2005).
[66] Sobon G, Sotor J, Pasternak I et al. 260 fs and 1 nJ pulse generation from a compact, mode-locked Tm-doped fiber laser[J]. Optics Express, 23, 31446-3145(2015).
[68] Hoogland H, Holzwarth R. Compact polarization-maintaining 2.05-μm fiber laser at 1-MHz and 1-MW peak power[J]. Optics Letters, 40, 3520-3523(2015).
[71] Luo J Q, Sun B, Liu J Y et al. Mid-IR supercontinuum pumped by femtosecond pulses from thulium doped all-fiber amplifier[J]. Optics Express, 24, 13939-13945(2016).
[72] Haxsen F, Wandt D, Morgner U et al. Pulse energy of 151 nJ from ultrafast thulium-doped chirped-pulse fiber amplifier[J]. Optics Letters, 35, 2991-2993(2010).
[74] Rampur A, Stepanenko Y, Stępniewski G et al. Ultra low-noise coherent supercontinuum amplification and compression below 100 fs in an all-fiber polarization-maintaining thulium fiber amplifier[J]. Optics Express, 27, 35041-35051(2019).
[75] Gaida C, Gebhardt M, Stutzki F et al. Self-compression in a solid fiber to 24 MW peak power with few-cycle pulses at 2 μm wavelength[J]. Optics Letters, 40, 5160-5163(2015).
[76] Mitrofanov A V, Voronin A A. Sidorov-Biryukov D A, et al. Subterawatt few-cycle mid-infrared pulses from a single filament[J]. Optica, 3, 299-302(2016).
[77] Gebhardt M, Gaida C, Stutzki F et al. High average power nonlinear compression to 4 GW, sub-50 fs pulses at 2 μm wavelength[J]. Optics Letters, 42, 747(2017).
[78] Gebhardt M, Gaida C, Heuermann T et al. Nonlinear pulse compression to 43 W GW-class few-cycle pulses at 2 μm wavelength[J]. Optics Letters, 42, 4179-4182(2017).
[79] Nomura Y, Fuji T K. Generation of watt-class, sub-50 fs pulses through nonlinear spectral broadening within a thulium-doped fiber amplifier[J]. Optics Express, 25, 13691-13696(2017).
[80] Heuermann T, Gaida C, Gebhardt M et al. Thulium-doped nonlinear fiber amplifier delivering 50 fs pulses at 20 W of average power[J]. Optics Letters, 43, 4441-4444(2018).
Get Citation
Copy Citation Text
Minglie Hu, Yu Cai. Research Progress on Mid-Infrared Ultrafast Fiber Laser[J]. Chinese Journal of Lasers, 2020, 47(5): 0500009
Category: reviews
Received: Mar. 6, 2020
Accepted: Apr. 7, 2020
Published Online: May. 12, 2020
The Author Email: Hu Minglie (huminglie@tju.edu.cn)