Chinese Journal of Lasers, Volume. 44, Issue 4, 402006(2017)
Efficient Pulsed Laser Ablation in Liquid Based on Microfluidic Technology
[1] [1] Zeng H B, Du X W, Singh S C, et al. Nanomaterials via laser ablation/irradiation in liquid: a review[J]. Adv Funct Mater, 2012, 22(7): 1333-1353.
[2] [2] Amendola V, Meneghetti M. What controls the composition and the structure of nanomaterials generated by laser ablation in liquid solution [J]. Phys Chem Chem Phys, 2013, 15(9): 3027-3046.
[3] [3] Valverde-Alva M A, García-Fernández T, Esparza-Alegría E, et al. Laser ablation efficiency during the production of Ag nanoparticles in ethanol at a low pulse repetition rate (1-10 Hz)[J]. Laser Phys Lett, 2016, 13(10): 106002.
[4] [4] Camarda P, Messina F, Vaccaro L, et al. Controlling the oxidation processes of Zn nanoparticles produced by pulsed laser ablation in aqueous solution[J]. J Appl Phys, 2016, 120(12): 124312.
[5] [5] Fang He, Wang Shunli, Li Liqun, et al. Synthesis and photoluminescence of ZnO and Zn/ZnO nanoparticles prepared by liquid-phase pulsed laser ablation[J]. Acta Physica Sinica, 2011, 60(9): 096102.
[6] [6] Usui H, Shimizu Y, Sasaki T, et al. Photoluminescence of ZnO nanoparticles prepared by laser ablation in different surfactant solutions[J]. J Phys Chem B, 2005, 109(1): 120-124.
[7] [7] Tan D Z, Ma Z J, Xu B B, et al. Surface passivated silicon nanocrystals with stable luminescence synthesized by femtosecond laser ablation in solution[J]. Phys Chem Chem Phys, 2011, 13(45): 20255-20261.
[8] [8] Tan D Z, Zhou S F, Xu B B, et al. Simple synthesis of ultra-small nanodiamonds with tunable size and photoluminescence[J]. Carbon, 2013, 62: 374-381.
[9] [9] Wang J B, Yang G W, Zhang C Y, et al. Cubic-BN nanocrystals synthesis by pulsed laser induced liquid-solid interfacial reaction[J]. Chem Phys Lett, 2003, 367(1-2): 10-14.
[10] [10] Henglein A, Holzwarth A, Janata E. Chemistry of colloidal silver: reactions of lead atoms and small lead aggregates with Agn[J]. Ber Bunsenges Phys Chem, 1993, 97(11): 1429-1434.
[11] [11] Fojtik A, Giersig M, Henglein A, et al. Formation of nanometer-size silicon particles in a laser-induced plasma in SiH4[J]. Ber Bunsenges Phys Chem, 1993, 97(11): 1493-1496.
[12] [12] Amendola V, Meneghetti M. Controlled size manipulation of free gold nanoparticles by laser irradiation and their facile bioconjugation[J]. J Mater Chem, 2007, 17(17): 4705-4710.
[13] [13] Ganeev R A, Baba M, Ryasnyansky A I, et al. Characterization of optical and nonlinear optical properties of silver nanoparticles prepared by laser ablation in various liquids[J]. Opt Commun, 2004, 240(4-6): 437-448.
[14] [14] Stratakis E, Barberoglou M, Fotakis C, et al. Generation of Al nanoparticles via ablation of bulk Al in liquids with short laser pulses[J]. Opt Express, 2009, 17(15): 12650-12659.
[15] [15] Mafuné F, Kohno J, Takeda Y, et al. Formation and size control of silver nanoparticles by laser ablation in aqueous solution[J]. J Phys Chem B, 2000, 104(39): 9111-9117.
[16] [16] Lee I, Han S W, Kim K, et al. Production of Au-Ag alloy nanoparticles by laser ablation of bulk alloys[J]. Chem Commun, 2001, 18(18): 1782-1783.
[17] [17] Sylvestre J P, Kabashin A V, Sacher E, et al. Stabilization and size control of gold nanoparticles during laser ablation in aqueous cyclodextrins[J]. J Am Chem Soc, 2004, 126(23): 7176-7177.
[18] [18] Han H F, Fang Y, Li Z P, et al. Tunable surface plasma resonance frequency in Ag core/Au shell nanoparticles system prepared by laser ablation[J]. Appl Phys Lett, 2008, 92(2): 023116.
[19] [19] Li Shuanghao, Zhao Yan. Fabrication and properties of Au/Ag core/shell nanostructures prepared by laser ablation in liquid solutions[J]. Chinese J Lasers, 2014, 41(7): 0706001.
[21] [21] Streubel R, Barcikowski S, Gkce B, et al. Continuous multigram nanoparticle synthesis by high-power, high-repetition-rate ultrafast laser ablation in liquids[J]. Opt Lett, 2016, 41(7): 1486-1489.
[22] [22] Brsch N, Jakobi J, Weiler S, et al. Pure colloidal metal and ceramic nanoparticles from high-power picosecond laser ablation in water and acetone[J]. Nanotechnology, 2009, 20(44): 445603.
[23] [23] Asahi T, Mafuné F, Rehbock C, et al. Strategies to harvest the unique properties of laser-generated nanomaterials in biomedical and energy applications[J]. Appl Surf Sci, 2015, 348: 1-3.
[24] [24] Eliezer S, Eliaz N, Grossman E, et al. Synthesis of nanoparticles with femtosecond laser pulses[J]. Phys Rev B, 2004, 69(14): 1124-1133.
[25] [25] Wu Han, Zhang Nan, He Miao, et al. Calculation of argon-aluminum interatomic potential and its application in molecular dynamics simulation of femtosecond laser ablation[J]. Chinese J Lasers, 2016, 43(8): 0802004.
[26] [26] Wang C X, Liu P, Cui H, et al. Nucleation and growth kinetics of nanocrystals formed upon pulsed-laser ablation in liquid[J]. Appl Phys Lett, 2005, 87(20): 201913.
Get Citation
Copy Citation Text
Guan Kaimin, Liu Jinqiao, Xu Ying, Yu Yanhao. Efficient Pulsed Laser Ablation in Liquid Based on Microfluidic Technology[J]. Chinese Journal of Lasers, 2017, 44(4): 402006
Category: laser manufacturing
Received: Nov. 13, 2016
Accepted: --
Published Online: Apr. 10, 2017
The Author Email: Kaimin Guan (Guankm@163.com)