Opto-Electronic Engineering, Volume. 52, Issue 1, 240236(2025)
Remote sensing image road extraction by integrating ResNeSt and multi-scale feature fusion
[1] Huang B, Zhao B, Song Y M. Urban land-use mapping using a deep convolutional neural network with high spatial resolution multispectral remote sensing imagery[J]. Remote Sens Environ, 214, 73-86(2018).
[2] Xu Y X, Chen H, Du C et al. MSACon: mining spatial attention-based contextual information for road extraction[J]. IEEE Trans Geosci Remote Sens, 60, 5604317(2022).
[3] Xiao Z J, Zhang J H, Lin B H. Feature coordination and fine-grained perception of small targets in remote sensing images[J]. Opto-Electron Eng, 51, 240066(2024).
[4] Liang L M, Chen K Q, Wang C B et al. Remote sensing image detection algorithm integrating visual center mechanism and parallel patch perception[J]. Opto-Electron Eng, 51, 240099(2024).
[5] Yuan Q Q, Shen H F, Li T W et al. Deep learning in environmental remote sensing: achievements and challenges[J]. Remote Sens Environ, 241, 111716(2020).
[6] Zhu Q Q, Zhang Y A, Wang L Z et al. A global context-aware and batch-independent network for road extraction from VHR satellite imagery[J]. ISPRS J Photogramm Remote Sens, 175, 353-365(2021).
[7] He D, Shi Q, Liu X P et al. Generating 2 m fine-scale urban tree cover product over 34 metropolises in China based on deep context-aware sub-pixel mapping network[J]. Int J Appl Earth Obs Geoinf, 106, 102667(2022).
[8] Lin N, Zhang X Q, Wang L et al. Road extraction from remote sensing images based on dilated convolutions U-Net[J]. Sci Surv Mapp, 46, 109-114,156(2021).
[9] Yang J L, Guo X J, Chen Z H. Road extraction method from remote sensing images based on improved U-Net network[J]. J Image Graph, 26, 3005-3014(2021).
[10] Shafiq M, Gu Z Q. Deep residual learning for image recognition: a survey[J]. Appl Sci, 12, 8972(2022).
[12] Zhang Z X, Liu Q J, Wang Y H. Road extraction by deep residual U-Net[J]. IEEE Geosci Remote Sens Lett, 15, 749-753(2018).
[14] Zhang Z, Chen Z, Liu C. Road extraction technology from remote sensing images based on LinkNet and feature aggregation module[J]. China Science and Technology Information, 672, 116-119(2022).
[15] Gao L P, Wang J Y, Wang Q X et al. Road extraction using a dual attention dilated-LinkNet based on satellite images and floating vehicle trajectory data[J]. IEEE J Sel Top Appl Earth Obs Remote Sens, 14, 10428-10438(2021).
[17] Cui Y, Yu Z K, Han J C et al. Dual-triple attention network for hyperspectral image classification using limited training samples[J]. IEEE Geosci Remote Sens Lett, 19, 5504705(2022).
[19] Diakogiannis F I, Waldner F, Caccetta P et al. ResUNet-a: a deep learning framework for semantic segmentation of remotely sensed data[J]. ISPRS J Photogramm Remote Sens, 162, 94-114(2020).
[20] Wang Y, Peng Y X, Li W et al. DDU-Net: dual-decoder-U-Net for road extraction using high-resolution remote sensing images[J]. IEEE Trans Geosci Remote Sens, 60, 4412612(2022).
[21] Qin X B, Zhang Z C, Huang C Y et al. U2-Net: going deeper with nested U-structure for salient object detection[J]. Pattern Recognit, 106, 107404(2020).
Get Citation
Copy Citation Text
Ming Hao, He Bai, Tingting Xu. Remote sensing image road extraction by integrating ResNeSt and multi-scale feature fusion[J]. Opto-Electronic Engineering, 2025, 52(1): 240236
Category: Article
Received: Oct. 9, 2024
Accepted: Dec. 16, 2024
Published Online: Feb. 21, 2025
The Author Email: Ming Hao (郝明)