Acta Optica Sinica, Volume. 40, Issue 9, 0915001(2020)

Stereo Matching Based on Guidance Image and Adaptive Support Region

Lingyin Kong, Jiangping Zhu, and Sancong Ying*
Author Affiliations
  • College of Computer Science, Sichuan University, Chengdu, Sichuan 610065, China
  • show less
    Figures & Tables(13)
    Flowchart of proposed algorithm
    Schematic of constructing adaptive support region based on cross method
    Disparity maps of three cost computation methods. (a) C1; (b) C2; (c) proposed gradient calculation method
    Weighted averages for all regions and non-occluded regions. (a) Avgerr; (b) RMSE
    Weighted average after disparity refinement on each step. (a)(b) Avgerr; (c)(d) RMSE
    Comparison of disparity results. (a) Adirondack; (b) Jadeplant; (c) Piano; (d) Motorcycle; (e) Recycle
    • Table 1. Weighted average of errors before and after disparity refinement and reduced percentage (disparity map of proposed gradient calculation method)

      View table

      Table 1. Weighted average of errors before and after disparity refinement and reduced percentage (disparity map of proposed gradient calculation method)

      ParameterWeighted average /pixelReducedpercentage /%
      Before disparity refinementAfter disparity refinement
      Avgerr(all)21.111.3046.4
      Avgerr(nonocc)12.17.8135.5
      RMSE(all)47.227.7041.3
      RMSE(nonocc)31.620.9033.9
    • Table 2. Weighted average of errors before and after disparity refinement and reduced percentage (disparity map of C1)

      View table

      Table 2. Weighted average of errors before and after disparity refinement and reduced percentage (disparity map of C1)

      ParameterWeighted average /pixelReduced percentage /%
      Before disparity refinementAfter disparity refinement
      Avgerr(all)22.812.4045.6
      Avgerr(nonocc)13.68.6336.5
      RMSE(all)49.629.8039.9
      RMSE(nonocc)34.522.9033.6
    • Table 3. Weighted average of errors before and after disparity refinement and reduced percentage (disparity map of C2)

      View table

      Table 3. Weighted average of errors before and after disparity refinement and reduced percentage (disparity map of C2)

      ParameterWeighted average /pixelReduced percentage /%
      Before disparity refinementAfter disparity refinement
      Avgerr(all)24.514.939.2
      Avgerr(nonocc)15.110.729.1
      RMSE(all)51.534.632.8
      RMSE(nonocc)36.327.125.3
    • Table 4. Comparison of Avgerr in all regionspixel

      View table

      Table 4. Comparison of Avgerr in all regionspixel

      Image nameLE-ELASIEBIMstSPSSM-AWPDSGCADoGGuidedProposed algorithm
      Adirondack9.3127.306.5110.507.6820.106.40
      ArtL5.9015.1015.2019.9021.7028.009.00
      Jadeplant64.5055.6040.0062.7045.0056.5026.10
      Motorcycle7.245.548.3511.0010.6013.808.11
      MotorcycleE7.658.218.4512.5010.4016.8011.40
      Piano6.256.4012.009.0811.5013.406.15
      PianoL9.6918.9025.0029.7024.5037.3034.00
      Pipes12.8011.8016.1021.1019.9023.8014.90
      Playroom10.1018.0025.2020.7024.6030.3010.50
      Playtable23.9017.9015.709.5034.5030.8016.70
      PlaytableP4.274.9512.409.7514.8013.0010.00
      Recycle7.395.298.817.187.569.134.20
      Shelves8.4817.1023.7011.4017.3019.009.97
      Teddy2.985.318.019.4412.2013.403.35
      Vintage14.0010.9053.7016.8043.8013.6010.90
      Australia15.209.178.6419.1016.6018.2012.00
      AustraliaP6.945.548.7718.2012.4012.608.31
      Bicycle26.687.5411.4016.0012.9017.6013.70
      Classroom224.6027.9020.2029.3032.6034.909.09
      Classroom2E69.6055.0027.0051.1039.3076.3067.10
      Computer12.4013.8022.2022.5020.6022.1013.20
      Crusade21.7074.3050.8091.8049.5073.4036.30
      CrusadeP21.0074.6050.2094.9050.5071.3035.60
      Djembe2.732.103.657.335.716.642.98
      DjembeL13.8029.1017.2031.8024.5039.0019.50
      Hoops22.8045.0038.7037.7036.3056.6023.00
      Livingroom10.309.4930.4016.8022.9025.907.18
      Newkuba16.2013.3020.3028.5023.2028.7011.30
      Plants43.3023.3026.2032.2027.7033.9025.80
      Staircase21.3030.9039.4036.4039.8057.5029.80
      Weighted average15.9520.9520.7026.5022.8029.2015.20
    • Table 5. Comparison of Avgerr in non-occluded regionspixel

      View table

      Table 5. Comparison of Avgerr in non-occluded regionspixel

      Image nameLE-ELASIEBIMstSPSSM-AWPDSGCADoGGuidedProposed algorithm
      Adirondack8.4626.103.576.313.2515.204.84
      ArtL3.834.675.349.655.959.574.62
      Jadeplant41.1041.9022.8031.8018.9027.1016.10
      Motorcycle5.122.723.114.713.605.644.58
      MotorcycleE5.804.993.156.393.418.317.72
      Piano5.545.699.346.687.178.095.20
      PianoL8.9717.5022.9028.4021.1032.4034.40
      Pipes7.445.476.7810.607.239.677.53
      Playroom8.7612.9012.509.089.3614.005.05
      Playtable22.4014.809.705.0929.4024.5013.00
      PlaytableP3.473.267.645.187.945.325.67
      Recycle6.934.996.273.863.805.563.37
      Shelves8.2616.4022.309.7314.7016.209.49
      Teddy2.292.641.523.643.514.152.15
      Vintage13.1010.4052.6010.7039.7015.009.64
      Australia13.406.535.3213.5011.0012.308.48
      AustraliaP5.273.365.4812.706.756.625.70
      Bicycle24.885.047.7011.007.0111.2010.50
      Classroom219.3019.305.6017.5013.7016.305.35
      Classroom2E66.5045.7012.5041.8021.5062.6064.80
      Computer6.063.418.0511.005.906.833.92
      Crusade15.6051.3015.1070.106.7234.0019.20
      CrusadeP13.7046.4013.1072.305.8530.6015.30
      Djembe1.941.521.844.012.783.652.23
      DjembeL13.3029.2016.1028.3022.2037.0019.20
      Hoops18.2039.2022.8025.8017.2035.0016.90
      Livingroom9.628.7719.407.8811.9013.406.19
      Newkuba12.808.1912.6021.5011.1014.207.60
      Plants35.4016.9014.5019.7014.1019.1017.90
      Staircase19.1027.6027.5021.7023.8034.4024.40
      Weighted average12.4315.1011.0017.3610.2315.8510.36
    • Table 6. Comparison of RMSE in all regionspixel

      View table

      Table 6. Comparison of RMSE in all regionspixel

      Image nameLE-ELASIEBIMstSPSSM-AWPDSGCADoGGuidedProposed algorithm
      Adirondack25.4058.9023.0030.3025.1048.9019.20
      ArtL16.8038.8039.9038.7048.6059.5022.80
      Jadeplant120.00128.0095.80119.00102.00118.0062.60
      Motorcycle23.3020.1029.1033.8032.5039.4023.20
      MotorcycleE24.0027.4029.8036.9032.4044.6028.90
      Piano13.9013.9032.1019.3029.2031.6012.40
      PianoL18.7039.0053.8056.3050.8065.8065.30
      Pipes30.7030.2041.0047.3047.4052.6035.10
      Playroom25.9038.0059.5047.8058.3066.7027.60
      Playtable52.3038.6043.3025.0068.3059.5040.10
      PlaytableP12.6014.2037.2025.5038.4034.4028.00
      Recycle17.6017.5026.5022.5023.3025.7010.60
      Shelves15.3030.4044.4023.8033.5033.9019.40
      Teddy8.3218.6027.8025.9034.9036.7013.60
      Vintage27.4028.80131.0045.80105.0066.1027.70
      Australia34.9027.9030.0046.6040.8045.2032.60
      AustraliaP26.6022.9030.9045.8035.9038.3027.50
      Bicycle221.0023.5032.1037.7032.6040.2032.30
      Classroom255.8068.7060.9064.1082.6085.4027.30
      Classroom2E112.00106.0076.4093.1088.30148.00127.00
      Computer28.2034.1053.7042.3046.7048.0031.70
      Crusade58.70156.00141.00152.00131.00151.0079.40
      CrusadeP59.00160.00140.00156.00134.00150.0080.10
      Djembe8.107.3015.0027.8019.7021.509.28
      DjembeL31.0058.6042.8061.3051.4066.4042.70
      Hoops51.7077.9078.2072.6073.7099.9050.10
      Livingroom23.0024.9067.9039.8052.8058.6017.60
      Newkuba53.3038.1065.2078.2068.0081.9033.70
      Plants72.6054.6059.3063.9062.9069.4055.70
      Staircase46.0048.2085.8073.6078.70102.0051.20
      Weighted average36.2548.1554.8555.2056.1564.5035.70
    • Table 7. Comparison of RMSE in non-occluded regionspixel

      View table

      Table 7. Comparison of RMSE in non-occluded regionspixel

      Image nameLE-ELASIEBIMstSPSSM-AWPDSGCADoGGuidedProposed algorithm
      Adirondack24.6058.0016.4021.3013.2042.2015.80
      ArtL13.8015.6017.2022.7017.9028.3014.10
      Jadeplant91.90121.0075.7081.5063.6075.7046.80
      Motorcycle18.3011.4015.5019.1014.9021.4014.80
      MotorcycleE20.0020.9015.5024.0014.5028.8022.30
      Piano13.1012.7027.5014.5020.2019.4010.50
      PianoL17.9037.4052.0056.2047.3060.9066.80
      Pipes23.3019.2024.5032.2024.6029.6024.50
      Playroom25.5031.5035.8027.2025.8037.5013.90
      Playtable51.2032.4033.1014.3063.9052.2033.70
      PlaytableP11.309.2029.1015.3025.6015.5015.30
      Recycle17.1016.9021.9012.9013.6018.108.36
      Shelves15.1029.4043.5020.2029.8029.7018.60
      Teddy6.8610.706.6312.1014.4014.209.72
      Vintage26.3029.00134.0026.20104.0050.7025.00
      Australia31.5021.3022.4037.8031.0035.4025.20
      AustraliaP22.8016.4023.5036.7024.9025.9022.40
      Bicycle217.1017.4026.0029.9022.0030.7027.30
      Classroom249.8057.5026.1048.5047.1052.6019.50
      Classroom2E112.0099.2053.3086.3059.10136.00126.00
      Computer16.609.4730.0022.5017.5020.5011.30
      Crusade49.80131.0076.70127.0032.9084.2051.00
      CrusadeP48.60123.0071.20131.0031.1079.2037.90
      Djembe5.735.549.1317.9011.8014.007.17
      DjembeL30.8059.2041.7055.0049.2065.1043.00
      Hoops47.5072.7059.7060.1046.3073.2043.40
      Livingroom22.7024.3051.8021.3032.6035.3016.00
      Newkuba52.0026.5054.0073.8042.5050.5027.90
      Plants62.4045.0042.4046.6042.9047.9044.20
      Staircase42.0041.8075.4056.2060.6066.2043.50
      Weighted average31.4539.1537.4541.2031.4541.5026.65
    Tools

    Get Citation

    Copy Citation Text

    Lingyin Kong, Jiangping Zhu, Sancong Ying. Stereo Matching Based on Guidance Image and Adaptive Support Region[J]. Acta Optica Sinica, 2020, 40(9): 0915001

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Machine Vision

    Received: Nov. 25, 2019

    Accepted: Jan. 17, 2020

    Published Online: May. 6, 2020

    The Author Email: Sancong Ying (yingsancong@scu.edu.cn)

    DOI:10.3788/AOS202040.0915001

    Topics