Chinese Journal of Lasers, Volume. 42, Issue 1, 102001(2015)
Finite Element Analysis of Acceleration Sensitivity of Optical Cavities Supported by Soft Materials
[1] [1] N Hinkley, J A Sherman, N B Phillips, et al.. An atomic clock with 10-18 instability[J]. Science, 2013, 341(6151): 1215-1218.
[2] [2] B J Bloom, T L Nicholson, J R Williams, et al.. An optical lattice clock with accuracy and stability at the 10- 18 level[J]. Nature, 2014, 506(7486): 71-75.
[3] [3] J Abadie, B P Abbott, R Abbott, et al.. A gravitational wave observatory operating beyond the quantum shot-noise limit: Squeezed light in application[J]. Nature Phys, 2011, 7(12): 962-965.
[4] [4] K Somiya. Detector configuration of KAGRA-the Japanese cryogenic gravitational-wave detector[J]. Class Quantum Grav, 2012, 29(12): 124007.
[5] [5] A Brillet, J L Hall. Improved laser test of the isotropy of space[J]. Phys Rev Lett, 1979, 42(9): 549-552.
[6] [6] T Rosenband, D B Hume, P O Schmidt, et al.. Frequency ratio of Al+ and Hg+ single-ion optical clocks; metrology at the 17th decimal place[J]. Science, 2008, 319(5871): 1808-1812.
[7] [7] C Eisele, A Y Nevsky, S Schiller. Laboratory test of the isotropy of light propagation at the 10-17 level[J]. Phys Rev Lett, 2009, 103(9): 090401.
[8] [8] S Herrmann, A Senger, K Mhle, et al.. Rotating optical cavity experiment testing Lorentz invariance at the 10-17 level[J]. Phys Rev D, 2009, 80(10): 105011.
[9] [9] S Reynaud, C Salomon, P Wolf. Testing general relativity with atomic clocks[J]. Space Sci Rev, 2009, 148(1-4): 233-247.
[10] [10] R W P Drever, J L Hall, F V Kowalski, et al.. Laser phase and frequency stabilization using an optical resonator[J]. Appl Phys B, 1983, 31(2): 97-105.
[11] [11] B C Young, F C Cruz, W M Itano, et al.. Visible lasers with subhertz linewidths[J]. Phys Rev Lett, 1999, 82(19): 3799-3802.
[12] [12] T Kessler, C Hagemann, C Grebing, et al.. A sub-40-mHz-linewidth laser based on a silicon single-crystal optical cavity[J]. Nat Photon, 2012, 6(10): 687-692.
[13] [13] Y Y Jiang, A D Ludlow, N D Lemke, et al.. Making optical atomic clocks more stable with 10- 16-level laser stabilization[J]. Nat Photon, 2011, 5(3): 158-161.
[15] [15] Liu fang, Wang chun, Li Liufeng, et al.. Frequency noise suppression of a dye laser based on intracavity electro-optic modulator[J]. Chinese J Lasers, 2013, 40(5): 0517001.
[16] [16] H Q Chen, Y Y Jiang, S Fang, et al.. Frequency stabilization of Nd:YAG lasers with a most probable linewidth of 0.6 Hz[J]. J Opt Soc Am B, 2013, 30(6): 1546-1550.
[17] [17] J Alnis, A Matveev, N Kolachevsky, et al.. Subhertz linewidth diode lasers by stabilization to vibrationally and thermally compensated ultralow-expansion glass Fabry-Pérot cavities[J]. Phys Rev A, 2008, 77(5): 053809.
[18] [18] M Notcutt, L S Ma, J Ye, et al.. Simple and compact 1-Hz laser system via an improved mounting configuration of a reference cavity [J]. Opt Lett, 2005, 30(14): 1815-1817.
[19] [19] L S Chen, J L Hall, J Ye, et al.. Vibration-induced elastic deformation of Fabry-Perot cavities[J]. Phys Rev A, 2006, 74(5): 053801.
[20] [20] T Nazarova, F Riehle, U Sterr. Vibration-insensitive reference cavity for an ultra-narrow-linewidth laser[J]. Appl Phys B, 2006, 83(4): 531-536.
[21] [21] S A Webster, M Oxborrow, P Gill. Vibration insensitive optical cavity[J]. Phys Rev A, 2007, 75(1): 011801.
[22] [22] J Millo, D V Magalhes, C Mandache, et al.. Ultrastable lasers based on vibration insensitive cavities[J]. Phys Rev A, 2009, 79(5): 053829.
[23] [23] Y N Zhao, J Zhang, A Stejskal, et al.. A vibration-insensitive optical cavity and absolute determination of its ultrahigh stability[J]. Opt Express, 2009, 17(11): 8970-8982.
[24] [24] Yang Tao, Li Wenbo, Zang Erjun, et al.. Decreased vibrational susceptibility of Fabry-Perot cavities via designs of geometry and structural support[J]. Chin Phys, 2007, 16(5): 1374-1384.
[25] [25] S Amairi, T Legero, T Kessler, et al.. Reducing the effect of thermal noise in optical cavities[J]. Appl Phys B, 2013, 113(2): 233-242.
[26] [26] J Zhang, Y X Luo, B Ouyang, et al.. Design of an optical reference cavity with low thermal noise limit and flexible thermal expansion properties[J]. Eur Phys J D, 2013, 67(2): 1-9.
[28] [28] D R Leibrandt, M J Thorpe, M Notcutt, et al.. Spherical reference cavities for frequency stabilization of lasers in non-laboratory environments[J]. Opt Express, 2011, 19(4): 3471-3482.
Get Citation
Copy Citation Text
Lü Shasha, Wang Chun, Shen Hui, Li Liufeng, Chen Lisheng. Finite Element Analysis of Acceleration Sensitivity of Optical Cavities Supported by Soft Materials[J]. Chinese Journal of Lasers, 2015, 42(1): 102001
Category: Laser physics
Received: May. 26, 2014
Accepted: --
Published Online: Dec. 26, 2014
The Author Email: Shasha Lü (L11554110840@163.com)