Chinese Journal of Lasers, Volume. 42, Issue 1, 102001(2015)

Finite Element Analysis of Acceleration Sensitivity of Optical Cavities Supported by Soft Materials

Lü Shasha1,2、*, Wang Chun1,2, Shen Hui1,2, Li Liufeng1,3, and Chen Lisheng1,2,3
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • show less
    References(28)

    [1] [1] N Hinkley, J A Sherman, N B Phillips, et al.. An atomic clock with 10-18 instability[J]. Science, 2013, 341(6151): 1215-1218.

    [2] [2] B J Bloom, T L Nicholson, J R Williams, et al.. An optical lattice clock with accuracy and stability at the 10- 18 level[J]. Nature, 2014, 506(7486): 71-75.

    [3] [3] J Abadie, B P Abbott, R Abbott, et al.. A gravitational wave observatory operating beyond the quantum shot-noise limit: Squeezed light in application[J]. Nature Phys, 2011, 7(12): 962-965.

    [4] [4] K Somiya. Detector configuration of KAGRA-the Japanese cryogenic gravitational-wave detector[J]. Class Quantum Grav, 2012, 29(12): 124007.

    [5] [5] A Brillet, J L Hall. Improved laser test of the isotropy of space[J]. Phys Rev Lett, 1979, 42(9): 549-552.

    [6] [6] T Rosenband, D B Hume, P O Schmidt, et al.. Frequency ratio of Al+ and Hg+ single-ion optical clocks; metrology at the 17th decimal place[J]. Science, 2008, 319(5871): 1808-1812.

    [7] [7] C Eisele, A Y Nevsky, S Schiller. Laboratory test of the isotropy of light propagation at the 10-17 level[J]. Phys Rev Lett, 2009, 103(9): 090401.

    [8] [8] S Herrmann, A Senger, K Mhle, et al.. Rotating optical cavity experiment testing Lorentz invariance at the 10-17 level[J]. Phys Rev D, 2009, 80(10): 105011.

    [9] [9] S Reynaud, C Salomon, P Wolf. Testing general relativity with atomic clocks[J]. Space Sci Rev, 2009, 148(1-4): 233-247.

    [10] [10] R W P Drever, J L Hall, F V Kowalski, et al.. Laser phase and frequency stabilization using an optical resonator[J]. Appl Phys B, 1983, 31(2): 97-105.

    [11] [11] B C Young, F C Cruz, W M Itano, et al.. Visible lasers with subhertz linewidths[J]. Phys Rev Lett, 1999, 82(19): 3799-3802.

    [12] [12] T Kessler, C Hagemann, C Grebing, et al.. A sub-40-mHz-linewidth laser based on a silicon single-crystal optical cavity[J]. Nat Photon, 2012, 6(10): 687-692.

    [13] [13] Y Y Jiang, A D Ludlow, N D Lemke, et al.. Making optical atomic clocks more stable with 10- 16-level laser stabilization[J]. Nat Photon, 2011, 5(3): 158-161.

    [15] [15] Liu fang, Wang chun, Li Liufeng, et al.. Frequency noise suppression of a dye laser based on intracavity electro-optic modulator[J]. Chinese J Lasers, 2013, 40(5): 0517001.

    [16] [16] H Q Chen, Y Y Jiang, S Fang, et al.. Frequency stabilization of Nd:YAG lasers with a most probable linewidth of 0.6 Hz[J]. J Opt Soc Am B, 2013, 30(6): 1546-1550.

    [17] [17] J Alnis, A Matveev, N Kolachevsky, et al.. Subhertz linewidth diode lasers by stabilization to vibrationally and thermally compensated ultralow-expansion glass Fabry-Pérot cavities[J]. Phys Rev A, 2008, 77(5): 053809.

    [18] [18] M Notcutt, L S Ma, J Ye, et al.. Simple and compact 1-Hz laser system via an improved mounting configuration of a reference cavity [J]. Opt Lett, 2005, 30(14): 1815-1817.

    [19] [19] L S Chen, J L Hall, J Ye, et al.. Vibration-induced elastic deformation of Fabry-Perot cavities[J]. Phys Rev A, 2006, 74(5): 053801.

    [20] [20] T Nazarova, F Riehle, U Sterr. Vibration-insensitive reference cavity for an ultra-narrow-linewidth laser[J]. Appl Phys B, 2006, 83(4): 531-536.

    [21] [21] S A Webster, M Oxborrow, P Gill. Vibration insensitive optical cavity[J]. Phys Rev A, 2007, 75(1): 011801.

    [22] [22] J Millo, D V Magalhes, C Mandache, et al.. Ultrastable lasers based on vibration insensitive cavities[J]. Phys Rev A, 2009, 79(5): 053829.

    [23] [23] Y N Zhao, J Zhang, A Stejskal, et al.. A vibration-insensitive optical cavity and absolute determination of its ultrahigh stability[J]. Opt Express, 2009, 17(11): 8970-8982.

    [24] [24] Yang Tao, Li Wenbo, Zang Erjun, et al.. Decreased vibrational susceptibility of Fabry-Perot cavities via designs of geometry and structural support[J]. Chin Phys, 2007, 16(5): 1374-1384.

    [25] [25] S Amairi, T Legero, T Kessler, et al.. Reducing the effect of thermal noise in optical cavities[J]. Appl Phys B, 2013, 113(2): 233-242.

    [26] [26] J Zhang, Y X Luo, B Ouyang, et al.. Design of an optical reference cavity with low thermal noise limit and flexible thermal expansion properties[J]. Eur Phys J D, 2013, 67(2): 1-9.

    [28] [28] D R Leibrandt, M J Thorpe, M Notcutt, et al.. Spherical reference cavities for frequency stabilization of lasers in non-laboratory environments[J]. Opt Express, 2011, 19(4): 3471-3482.

    CLP Journals

    [1] Hui Yu, Wu Junsheng, Yu Bin, Li Mengge, Du Jing. Construction and Biomechanical Analysis of Integrated Three-Dimensional Optical Model of L3-L4 Segment of Spine[J]. Chinese Journal of Lasers, 2017, 44(7): 707001

    [2] Tang Xiao, Fang Wei, Wang Yupeng. Effect and Experiment Analysis of First Specular Reflection Error on Absolute Radiometers[J]. Chinese Journal of Lasers, 2016, 43(4): 408003

    Tools

    Get Citation

    Copy Citation Text

    Lü Shasha, Wang Chun, Shen Hui, Li Liufeng, Chen Lisheng. Finite Element Analysis of Acceleration Sensitivity of Optical Cavities Supported by Soft Materials[J]. Chinese Journal of Lasers, 2015, 42(1): 102001

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Laser physics

    Received: May. 26, 2014

    Accepted: --

    Published Online: Dec. 26, 2014

    The Author Email: Shasha Lü (L11554110840@163.com)

    DOI:10.3788/cjl201542.0102001

    Topics