Chinese Journal of Quantum Electronics, Volume. 42, Issue 3, 381(2025)
Research on highly sensitive ozone detection technology based on high precision cavity
[1] Anderson J O, Thundiyil J G, Stolbach A. Clearing the air: A review of the effects of particulate matter air pollution on human health[J]. Journal of Medical Toxicology, 8, 166-175(2012).
[2] Lefohn A S, Malley C S, Simon H et al. Responses of human health and vegetation exposure metrics to changes in ozone concentration distributions in the European Union, United States, and China[J]. Atmospheric Environment, 152, 123-145(2017).
[3] Sklaveniti S, Locoge N, Stevens P S et al. Development of an instrument for direct ozone production rate measurements: Measurement reliability and current limitations[J]. Atmospheric Measurement Techniques, 11, 741-761(2018).
[4] Sadanaga Y, Kawasaki S, Tanaka Y et al. New system for measuring the photochemical ozone production rate in the atmosphere[J]. Environmental Science & Technology, 51, 2871-2878(2017).
[5] Wang T, Xue L K, Brimblecombe P et al. Ozone pollution in China: A review of concentrations, meteorological influences, chemical precursors, and effects[J]. Science of the Total Environment, 575, 1582-1596(2017).
[6] Lu X, Hong J Y, Zhang L et al. Severe surface ozone pollution in China: A global perspective[J]. Environmental Science & Technology Letters, 5, 487-494(2018).
[7] Stevenson D S, Dentener F J, Schultz M G et al. Multimodel ensemble simulations of present-day and near-future tropospheric ozone[J]. Journal of Geophysical Research, 111, D08301(2006).
[8] Li Y L, Zhang X X, Li X et al. Detection of ozone and nitric oxide in decomposition products of air-insulated switchgear using ultraviolet differential optical absorption spectroscopy (UV-DOAS)[J]. Applied Spectroscopy, 72, 1244-1251(2018).
[9] Kalnajs L E, Avallone L M. A novel lightweight low-power dual-beam ozone photometer utilizing solid-state optoelectronics[J]. Journal of Atmospheric and Oceanic Technology, 27, 869-880(2010).
[10] Gao R S, Ballard J, Watts L A et al. A compact, fast UV photometer for measurement of ozone from research aircraft[J]. Atmospheric Measurement Techniques, 5, 2201-2210(2012).
[11] Ridley B A, Grahek F E, Walega J G. A small, high-sensitivity, medium-response ozone detector suitable for measurements from light aircraft[J]. Journal of Atmospheric & Oceanic Technology, 9, 142-148(1992).
[12] Hannun R A, Swanson A K, Bailey S A et al. A cavity-enhanced ultraviolet absorption instrument for high-precision, fast-time-response ozone measurements[J]. Atmospheric Measurement Techniques, 13, 6877-6887(2020).
[13] Washenfelder R A, Wagner N L, Dube W P et al. Measurement of atmospheric ozone by cavity ring-down spectroscopy[J]. Environmental Science & Technology, 45, 2938-2944(2011).
[14] Wild R J, Edwards P M, Dubé W P et al. A measurement of total reactive nitrogen, NOy, together with NO2, NO, and O3 via cavity ring-down spectroscopy[J]. Environmental Science & Technology, 48, 9609-9615(2014).
[15] Thompson J E, Myers K. Cavity ring-down lossmeter using a pulsed light emitting diode source and photon counting[J]. Measurement Science and Technology, 18, 147-154(2007).
[16] Zheng N N, Xie P H, Ling L Y et al. Detection of atmospheric SO2 and O3 using optical fiber coupling long-path differential optical absorption spectroscopy system with UV light emitting diodes[J]. Acta Optica Sinica, 33, 0301007(2013).
[17] Bucholtz A. Rayleigh-scattering calculations for the terrestrial atmosphere[J]. Applied Optics, 34, 2765-2773(1995).
[18] Min K E, Washenfelder R A, Dubé W P et al. A broadband cavity enhanced absorption spectrometer for aircraft measurements of glyoxal, methylglyoxal, nitrous acid, nitrogen dioxide, and water vapor[J]. Atmospheric Measurement Techniques, 9, 423-440(2016).
[19] Washenfelder R A, Langford A O, Fuchs H et al. Measurement of glyoxal using an incoherent broadband cavity enhanced absorption spectrometer[J]. Atmospheric Chemistry and Physics, 8, 7779-7793(2008).
[20] Engeln R, Berden G, Peeters R et al. Cavity enhanced absorption and cavity enhanced magnetic rotation spectroscopy[J]. Review of Scientific Instruments, 69, 3763-3769(1998).
[21] Wang X F, Zhang X, Zhang J Z et al. Ultraviolet light atmospheric scattering propagation model based on Monte Carlo method[J]. Laser & Optoelectronics Progress, 54, 110102(2017).
[22] García-Botella A, Fernández-Balbuena A A, Vázquez-Moliní D et al. Thermal influences on optical properties of light-emitting diodes: A semiempirical model[J]. Applied Optics, 40, 533-537(2001).
[23] Fang B, Zhao W X, Xu X Z et al. Portable broadband cavity-enhanced spectrometer utilizing Kalman filtering: Application to real-time, in situ monitoring of glyoxal and nitrogen dioxide[J]. Optics Express, 25, 26910-26922(2017).
[24] Thalman R, Baeza-Romero M T, Ball S M et al. Instrument intercomparison of glyoxal, methyl glyoxal and NO2 under simulated atmospheric conditions[J]. Atmospheric Measurement Techniques, 8, 1835-1862(2015).
[25] Gorshelev V, Serdyuchenko A, Weber M et al. High spectral resolution ozone absorption cross-sections—Part 1: Measurements, data analysis and comparison with previous measurements around 293 K[J]. Atmospheric Measurement Techniques, 7, 609-624(2014).
Get Citation
Copy Citation Text
Menghui LIU, Jinzhao TONG, Chuan LIN, Chenguang HUANG, Pinhua XIE. Research on highly sensitive ozone detection technology based on high precision cavity[J]. Chinese Journal of Quantum Electronics, 2025, 42(3): 381
Category:
Received: Oct. 8, 2023
Accepted: --
Published Online: Jun. 11, 2025
The Author Email: Chenguang HUANG (huangcg@imech.ac.cn), Pinhua XIE (phxie@aiofm.ac.cn)