Laser & Optoelectronics Progress, Volume. 59, Issue 2, 0200005(2022)
Improved U-Net Models and Its Applications in Medical Image Segmentation: A Review
[3] Zhou F Y, Jin L P, Dong J. Review of convolutional neural network[J]. Chinese Journal of Computers, 40, 1229-1251(2017).
[4] Feng Y B, Qiu D W, Cao H et al. Research on coronavirus disease 2019 (COVID-19) detection method based on depthwise separable DenseNet in chest X-ray images[J]. Journal of Biomedical Engineering, 37, 557-565(2020).
[7] Xiang J H, Xu H. Research on image semantic segmentation algorithm based on deep learning[J]. Application Research of Computers, 37, 316-317, 320(2020).
[22] He C E, Xu H J, Wang Z et al. Automatic segmentation algorithm for multimodal magnetic resonance-based brain tumor images[J]. Acta Optica Sinica, 40, 0610001(2020).
[34] Zhang X D, Wang T J, Zhu S J et al. Hyperspectral image classification based on dilated convolutional attention neural network[J]. Acta Optica Sinica, 41, 0310001(2021).
[35] Tian F Y, Zhou M Q, Yan F et al. Spinal CT segmentation based on AttentionNet and DenseUnet[J]. Laser & Optoelectronics Progress, 57, 201008(2020).
[39] Huang Y J, Shi Z F, Wang Z Q et al. Improved U-net based on mixed loss function for liver medical image segmentation[J]. Laser & Optoelectronics Progress, 57, 221003(2020).
[40] Mou H W, Guo Y, Quan X H et al. Magnetic resonance imaging brain tumor image segmentation based on improved U-Net[J]. Laser & Optoelectronics Progress, 58, 0410022(2021).
[41] Zhu C Z, Zou B J, Xiang Y et al. A survey of retinal vessel segmentation in fundus images[J]. Journal of Computer-Aided Design & Computer Graphics, 27, 2046-2057(2015).
[42] Tian F, Li Y, Wang J. Retinal blood vessel segmentation based on multi-scale wavelet transform fusion[J]. Acta Optica Sinica, 41, 0410001(2021).
[45] Li D X, Zhang Z. Improved U-net segmentation algorithm for the retinal blood vessel images[J]. Acta Optica Sinica, 40, 1010001(2020).
[46] Zhong S H, Guo X M, Zheng Y N. Improved U-net network for lung nodule segmentation[J]. Computer Engineering and Applications, 56, 203-209(2020).
[47] Zhang P, Xu X N, Wang H W et al. Computer-aided lung cancer diagnosis approaches based on deep learning[J]. Journal of Computer-Aided Design & Computer Graphics, 30, 90-99(2018).
[48] Gao X, Bi X J. Detection of low dose CT pulmonary nodules based on improved Faster R-CNN[J]. Application Research of Computers, 37, 404-406, 409(2020).
[49] Hou T X, Zhao J J, Qiang Y et al. Pulmonary nodules segmentation based on CRF 3D-UNet structure[J]. Computer Engineering and Design, 41, 1663-1669(2020).
[50] Zhang Q W, Chen M, Qin Y F et al. Lung nodule segmentation based on 3D ResUNet network[J]. Chinese Journal of Medical Physics, 36, 1356-1361(2019).
[51] Zhong S H, Wang M L, Guo X M et al. Study on the improved VNet network based pulmonary nodule segmentation method[J]. Chinese Journal of Scientific Instrument, 41, 206-215(2020).
[52] Wang P, Qiang Y, Yang X T et al. Network model for lung nodule segmentation based on double attention 3D-UNet[J]. Computer Engineering, 47, 307-313(2021).
[53] Sun M J, Xu J, Ma W et al. A new fully convolutional network for 3D liver region segmentation on CT images[J]. Chinese Journal of Biomedical Engineering, 37, 385-393(2018).
[54] Lei T, Zhou W Z, Zhang Y X et al. Lightweight V-Net for liver segmentation[C], 1379-1383(2020).
[55] Jiang Z K, Lü X G, Zhang J X et al. Review of deep learning methods for MRI brain tumor image segmentation[J]. Journal of Image and Graphics, 25, 215-228(2020).
[56] Li Q, Bai K X, Zhao L et al. Progresss and challenges of MRI brain tumor image segmentation[J]. Journal of Image and Graphics, 25, 419-431(2020).
[57] Lai X B, Xu M S, Xu X M. Glioblastoma multiforme multi-modal MR images segmentation using multi-class CNN[J]. Acta Electronica Sinica, 47, 1738-1747(2019).
Get Citation
Copy Citation Text
Huan Zhang, Dawei Qiu, Yibo Feng, Jing Liu. Improved U-Net Models and Its Applications in Medical Image Segmentation: A Review[J]. Laser & Optoelectronics Progress, 2022, 59(2): 0200005
Category: Reviews
Received: Apr. 27, 2021
Accepted: Jun. 27, 2021
Published Online: Dec. 23, 2021
The Author Email: Jing Liu (liuj_jn@163.com)