Journal of Synthetic Crystals, Volume. 51, Issue 7, 1202(2022)

First-Principles Calculation of Influence of Biaxial Strain on Electronic Structure and Optical Properties of g-ZnO/WS2 Heterojunction

PAN Duoqiao1、*, PANG Guowang1, LIU Chenxi1, SHI Leiqian1, ZHANG Lili1, LEI Bocheng1, ZHAO Xucai1, and HUANG Yineng1,2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    References(36)

    [1] [1] MENG R S, SUN X, JIANG J K, et al. Novel GaN-based nanocomposites: effective band structure and optical property tuning by tensile strain or external field[J]. Applied Surface Science, 2018, 427: 554-562.

    [2] [2] AZIZA Z B, PIERUCCI D, HENCK H, et al. Tunable quasiparticle band gap in few layer GaSe/graphene van der waals heterostructures[EB/OL]. 2017: arXiv: 1707.01288[cond-mat.mtrl-sci]. https://arxiv.org/abs/1707.01288

    [3] [3] CONG C X, SHANG J Z, WANG Y L, et al. Optical properties of 2D semiconductor WS2[J]. Advanced Optical Materials, 2018, 6(1): 1700767.

    [4] [4] ROMN R, COSTA F, ZOBELLI A, et al. Band gap measurements of monolayer h-BN and insights into carbon-related point defects[J]. 2D Materials, 2021, 8(4): 44001.

    [5] [5] WANG B, WANG G Z, YUAN H K, et al. Strain-tunable electronic and optical properties in two dimensional GaSe/g-C3N4 van der Waals heterojunction as photocatalyst for water splitting[J]. Physica E: Low-Dimensional Systems and Nanostructures, 2020, 118: 113896.

    [6] [6] CHEN H F, TAN C L, ZHANG K, et al. Enhanced photocatalytic performance of ZnO monolayer for water splitting via biaxial strain and external electric field[J]. Applied Surface Science, 2019, 481: 1064-1071.

    [8] [8] CHEN S F, LIU F N, XU M Z, et al. First-principles calculations and experimental investigation on SnO2@ZnO heterojunction photocatalyst with enhanced photocatalytic performance[J]. Journal of Colloid and Interface Science, 2019, 553: 613-621.

    [9] [9] GU S, ZHAO X L, ZHOU X Y, et al. Nickel-doped porous ZnO nanosheets functionalized with CuInS2 nanoparticles: an efficient photocatalyst for chromium (Ⅵ) reduction[J]. ChemPlusChem, 2020, 85(1): 142-150.

    [10] [10] WAKHARE S Y, DESHPANDE M D. The electronic and optical properties of monovalent atom-doped ZnO monolayers: the density functional theory[J]. Bulletin of Materials Science, 2019, 42(5): 1-8.

    [11] [11] SUN D, TAN C L, TIAN X H, et al. Comparative study on ZnO monolayer doped with Al, Ga and in atoms as transparent electrodes[J]. Materials, 2017, 10(7): 703.

    [12] [12] WAKHARE S Y, DESHPANDE M D. Structural, electronic and optical properties of metalloid element (B, Si, Ge, As, Sb, and Te) doped g-ZnO monolayer: a DFT study[J]. Journal of Molecular Graphics and Modelling, 2020, 101: 107753.

    [13] [13] WU Q, WANG P, LIU Y, et al. First-principles calculations of the electronic structure and optical properties of yttrium-doped ZnO monolayer with vacancy[J]. Materials, 2020, 13(3): 724.

    [14] [14] YAO H, YAO Q, WANG H, et al. Optoelectronic properties of MoS2/g-ZnO van der Waals heterostructure investigated by first-principles calculations[J]. Journal of Electronic Materials, 2020, 49(8): 4557-4562.

    [15] [15] ZHANG R L, XIE J W, WANG C, et al. Macroporous ZnO/ZnS/CdS composite spheres as efficient and stable photocatalysts for solar-driven hydrogen generation[J]. Journal of Materials Science, 2017, 52(19): 11124-11134.

    [16] [16] JANG E, KIM D W, HONG S H, et al. Visible light-driven g-C3N4@ZnO heterojunction photocatalyst synthesized via atomic layer deposition with a specially designed rotary reactor[J]. Applied Surface Science, 2019, 487: 206-210.

    [17] [17] GUAN Z Y, LIAN C S, HU S L, et al. Tunable structural, electronic, and optical properties of layered two-dimensional C2N and MoS2 van der Waals heterostructure as photovoltaic material[J]. The Journal of Physical Chemistry, C Nanomaterials and Interfaces, 2017, 121(6): 3654-3660.

    [20] [20] CHEN X F, SHENG H H, WANG J L, et al. Electronic and optical properties tuned by strain and external electric field of g-ZnO/2H-TiS2 van der Waals heterostructures[J]. Vacuum, 2020, 174: 109232.

    [21] [21] LIU S, LIAO Q L, LU S N, et al. Strain modulation in graphene/ZnO nanorod film Schottky junction for enhanced photosensing performance[J]. Advanced Functional Materials, 2016, 26(9): 1347-1353.

    [22] [22] WANG G Z, YUAN H K, CHANG J L, et al. ZnO/MoX2 (X=S, Se) composites used for visible light photocatalysis[J]. RSC Advances, 2018, 8(20): 10828-10835.

    [23] [23] ZIAT Y, HAMMI M, ZARHRI Z, et al. Investigation on Mo-doped SnO2 for potential use in magnetoelectronic applications: the DFT framework[J]. International Journal of Modern Physics B, 2020, 34(5): 2050020.

    [24] [24] CLARK S J, SEGALL M D, PICKARD C J, et al. First principles methods using CASTEP[J]. Zeitschrift Für Kristallographie - Crystalline Materials, 2005, 220(5/6): 567-570.

    [25] [25] SEGALL M D, LINDAN P J D, PROBERT M J, et al. First-principles simulation: ideas, illustrations and the CASTEP code[J]. Journal of Physics: Condensed Matter, 2002, 14(11): 2717-2744.

    [26] [26] TKATCHENKO A, SCHEFFLER M. Accurate molecular van der Waals interactions from ground-state electron density and free-atom reference data[J]. Physical Review Letters, 2009, 102(7): 073005.

    [27] [27] SHARMA D K, KUMAR S, AULUCK S. Electronic structure, defect properties, and hydrogen storage capacity of 2H-WS2: a first-principles study[J]. International Journal of Hydrogen Energy, 2018, 43(52): 23126-23134.

    [28] [28] LIN C M, LEUNG T C, WADEKAR P, et al. Tunable band gap engineering in type-Ⅱ g-ZnO/ZnX (X=S, Se, Te) hetero-bilayers[J]. Vacuum, 2021, 192: 110386.

    [29] [29] TUSCHE C, MEYERHEIM H L, KIRSCHNER J. Observation of depolarized ZnO(0001) monolayers: formation of unreconstructed planar sheets[J]. Physical Review Letters, 2007, 99(2): 026102.

    [30] [30] QI S Y, LIU X T, MA N L, et al. Construction and photocatalytic properties of WS2/BiOCl heterojunction[J]. Journal of Nanoparticle Research, 2020, 22(12): 1-14.

    [31] [31] YANG Y, FENG Z Y, ZHANG J M. Structural, electronic, magnetic, and optical properties of monolayer WS2 doped with Co-X6 (X=S, N, O, and F)[J]. Thin Solid Films, 2019, 675: 86-95.

    [32] [32] CHOUDHARY K, TAVAZZA F. Convergence and machine learning predictions of Monkhorst-Pack k-points and plane-wave cut-off in high-throughput DFT calculations[J]. Computational Materials Science, 2019, 161: 300-308.

    [35] [35] JIN Q, DAI X Y, SONG J J, et al. High photocatalytic performance of g-C3N4/WS2 heterojunction from first principles[J]. Chemical Physics, 2021, 545: 111141.

    [37] [37] BJRKMAN T, GULANS A, KRASHENINNIKOV A V, et al. Van der Waals bonding in layered compounds from advanced density-functional first-principles calculations[J]. Physical Review Letters, 2012, 108(23): 235502.

    [38] [38] HU J S, JI G P, MA X G, et al. Probing interfacial electronic properties of graphene/CH3NH3PbI3 heterojunctions: a theoretical study[J]. Applied Surface Science, 2018, 440: 35-41.

    [39] [39] XU P T, TANG Q, ZHOU Z. Structural and electronic properties of graphene-ZnO interfaces: dispersion-corrected density functional theory investigations[J]. Nanotechnology, 2013, 24(30): 305401.

    [40] [40] DING Y, WANG Y L, NI J, et al. First principles study of structural, vibrational and electronic properties of graphene-like MX2 (M=Mo, Nb, W, Ta; X=S, Se, Te) monolayers[J]. Physica B: Condensed Matter, 2011, 406(11): 2254-2260.

    [41] [41] MOGULKOC A, MOGULKOC Y, KECIK D, et al. The effect of strain and functionalization on the optical properties of borophene[J]. Physical Chemistry Chemical Physics, 2018, 20(32): 21043-21050.

    [43] [43] ZHANG J F, ZHOU P, LIU J J, et al. New understanding of the difference of photocatalytic activity among anatase, rutile and brookite TiO2[J]. Physical Chemistry Chemical Physics, 2014, 16(38): 20382-20386.

    Tools

    Get Citation

    Copy Citation Text

    PAN Duoqiao, PANG Guowang, LIU Chenxi, SHI Leiqian, ZHANG Lili, LEI Bocheng, ZHAO Xucai, HUANG Yineng. First-Principles Calculation of Influence of Biaxial Strain on Electronic Structure and Optical Properties of g-ZnO/WS2 Heterojunction[J]. Journal of Synthetic Crystals, 2022, 51(7): 1202

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Mar. 21, 2022

    Accepted: --

    Published Online: Aug. 12, 2022

    The Author Email: PAN Duoqiao (pdq129@sina.com)

    DOI:

    CSTR:32186.14.

    Topics