Journal of Functional Materials and Devices, Volume. 31, Issue 4, 272(2025)
Frontier exploration and application prospects of thin lithium manufacturing processes
[1] [1] LAI Y, YANG T, YANG Y, et al. A lithiophilic and conductive interlayer for dendrite-free lithium metal anodes[J]. Chemical Engineering Journal, 2023, 462: 142223.
[2] [2] HE M, HECTOR L G, DAI F, et al. Industry needs for practical lithium-metal battery designs in electric vehicles[J]. Nature Energy, 2024, 9(10): 1199-1205.
[3] [3] ZHANG R, LI N W, CHENG X B, et al. Advanced micro/nanostructures for lithium metal anodes[J]. Advanced Science, 2017, 4(3): 1600445.
[4] [4] ZHANG X, YANG Y, ZHOU Z. Towards practical lithium-metal anodes[J]. Chemical Society Reviews, 2020, 49(10): 3040-3071.
[5] [5] WANG Y, LIANG J, SONG X, et al. Recent progress in constructing halogenated interfaces for highly stable lithium metal anodes[J]. Energy Storage Materials, 2023, 54: 732-775.
[6] [6] LI B, CHAO Y, LI M, et al. A review of solid electrolyte interphase (SEI) and dendrite formation in lithium batteries[J]. Electrochemical Energy Reviews, 2023, 6(1): 7.
[7] [7] LUO Z, CAO Y, XU G, et al. Recent advances in robust and ultra-thin Li metal anode[J]. Carbon Neutralization, 2024, 3(4): 647-672.
[8] [8] LEE J, JEONG S H, NAM J S, et al. Toward thin and stable anodes for practical lithium metal batteries: A review, strategies, and perspectives[J]. EcoMat, 2023, 5(12): e12416.
[9] [9] WU W, LUO W, HUANG Y. Less is more: A perspective on thinning lithium metal towards high-energy-density rechargeable lithium batteries[J]. Chemical Society Reviews, 2023, 52(8): 2553-2572.
[10] [10] ZHANG C, FAN H, CHEN X, et al. Non-sticky Li-alloy leaves for long-lasting secondary batteries[J]. Energy & Environmental Science, 2022, 15(12): 5251-5260.
[11] [11] XU K. The ECPH encyclopedia of mining and metallurgy[M]. Singapore: Springer Nature Singapore, 2022: 1-2.
[12] [12] LI Y, LI Y, PEI A, et al. Atomic structure of sensitive battery materials and interfaces revealed by cryo-electron microscopy[J]. Science, 2017, 358(6362): 506-510.
[13] [13] LIN D, LIU Y, CUI Y. Reviving the lithium metal anode for high-energy batteries[J]. Nature Nanotechnology, 2017, 12(3): 194-206.
[14] [14] ZHANG X, WANG A, LIU X, et al. Dendrites in lithium metal anodes: Suppression, regulation, and elimination[J]. Accounts of Chemical Research, 2019, 52(11): 3223-3232.
[15] [15] KIM S, PARK G, LEE S J, et al. Lithium-metal batteries: From fundamental research to industrialization[J]. Advanced Materials, 2023, 35(43): 2206625.
[16] [16] HANSEN M R, GRAF R, SPIESS H W. Interplay of structure and dynamics in functional macromolecular and supramolecular systems as revealed by magnetic resonance spectroscopy[J]. Chemical Reviews, 2016, 116(3): 1272-1308.
[17] [17] HUANG W Z, XU P, HUANG X Y, et al. Lithium metal anode: Past, present, and future[J]. MetalMat, 2024, 1(1): e6.
[18] [18] SUN X, OUYANG M, HAO H. Surging lithium price will not impede the electric vehicle boom[J]. Joule, 2022, 6(8): 1738-1742.
[19] [19] DENG W, YIN X, BAO W, et al. Quantification of reversible and irreversible lithium in practical lithium-metal batteries[J]. Nature Energy, 2022, 7(11): 1031-1041.
[20] [20] MENG J, CHU F, HU J, et al. Liquid polydimethylsiloxane grafting to enable dendrite-free Li plating for highly reversible Li-metal batteries[J]. Advanced Functional Materials, 2019, 29(30): 1902220.
[21] [21] ZHANG K, LEE G H, PARK M, et al. Recent developments of the lithium metal anode for rechargeable non-aqueous batteries[J]. Advanced Energy Materials, 2016, 6(20): 1600811.
[22] [22] CHEN K, PATHAK R, GURUNG A, et al. Flower-shaped lithium nitride as a protective layer via facile plasma activation for stable lithium metal anodes[J]. Energy Storage Materials, 2019, 18: 389-396.
[23] [23] CAO W, LU J, ZHOU K, et al. Organic-inorganic composite SEI for a stable Li metal anode by in-situ polymerization[J]. Nano Energy, 2022, 95: 106983.
[24] [24] ZHANG Y, WANG C, PASTEL G, et al. 3D wettable framework for dendrite-free alkali metal anodes[J]. Advanced Energy Materials, 2018, 8(18): 1800635.
[25] [25] JIAO S, ZHENG J, LI Q, et al. Behavior of lithium metal anodes under various capacity utilization and high current density in lithium metal batteries[J]. Joule, 2018, 2(1): 110-124.
[26] [26] VISHNUGOPI B S, HAO F, VERMA A, et al. Double-edged effect of temperature on lithium dendrites[J]. ACS Applied Materials & Interfaces, 2020, 12(21): 23931-23938.
[27] [27] ZHU Y, XIE J, PEI A, et al. Fast lithium growth and short circuit induced by localized-temperature hotspots in lithium batteries[J]. Nature Communications, 2019, 10(1): 2067.
[28] [28] WANG H, ZHU Y, KIM S C, et al. Underpotential lithium plating on graphite anodes caused by temperature heterogeneity[J]. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(47): 29453-29461.
[30] [30] XU X, LIU Y, HWNAG J Y, et al. Role of Li-ion depletion on electrode surface: Underlying mechanism for electrodeposition behavior of lithium metal anode[J]. Advanced Energy Materials, 2020, 10(44): 2002390.
[31] [31] ZHANG G, WANG K, XU Y, et al. A 10-m ultrathin lithium metal composite anodes with superior electrochemical kinetics and cycling stability[J]. Energy & Environmental Materials, 2023, 6(4): e12598.
[36] [36] ZHANG J, EWEN J P, UEDA M, et al. Mechanochemistry of Zinc dialkyldithiophosphate on steel surfaces under elastohydrodynamic lubrication conditions[J]. ACS Applied Materials & Interfaces, 2020, 12(5): 6662-6676.
[37] [37] HUANG S, WU Z, JOHANNESSEN B, et al. Interfacial friction enabling ≤20 m thin free-standing lithium strips for lithium metal batteries[J]. Nature Communications, 2023, 14(1): 5678.
[38] [38] GUO Z, WANG T, WANG D, et al. Combining solid solution strengthening and second phase strengthening for thinning Li metal foils[J]. ACS Nano, 2023, 17(14): 14136-14143.
[39] [39] LIU S, JI X, YUE J, et al. High interfacial-energy interphase promoting safe lithium metal batteries[J]. Journal of the American Chemical Society, 2020, 142(5): 2438-2447.
[40] [40] LI X, ZHU R, JIANG H, et al. Thickness-controllable Li–Zn composite anode for high-energy and low-N/P ratio lithium metal batteries[J]. Journal of Materials Chemistry A, 2022, 10(20): 11246-11253.
[41] [41] MAO E Y, DU J M, DUAN X R, et al. Preparation and electrochemical performance of ultra-thin reduced graphene oxide/lithium metal composite foils[J]. New Carbon Materials, 2023, 38(4): 754-763.
[42] [42] JI W, LUO B, WANG Q, et al. Interface engineering enabling thin lithium metal electrodes down to 0.78 m for garnet-type solid-state batteries[J]. Nature Communications, 2024, 15: 9920.
[43] [43] XING J, CHEN T, YI L, et al. Endowing Cu foil self-wettable in molten lithium: A roll-to-roll wet coating strategy to fabricate high-performance ultrathin lithium metal anodes[J]. Energy Storage Materials, 2023, 63: 103067.
[44] [44] CAO J, SHI Y, GAO A, et al. Hierarchical Li electrochemistry using alloy-type anode for high-energy-density Li metal batteries[J]. Nature Communications, 2024, 15(1): 1354.
[45] [45] WU S, SU B, JIANG H, et al. Lithiophilicity conversion of carbon paper with uniform Cu2+1O coating: Boosting stable Li-Cu2+1O-CP composite anode through melting infusion[J]. Chemical Engineering Journal, 2020, 388: 124238.
[46] [46] CHEN Y, KE X, CHENG Y, et al. Boosting the electrochemical performance of 3D composite lithium metal anodes through synergistic structure and interface engineering[J]. Energy Storage Materials, 2020, 26: 56-64.
[47] [47] LUO C, TANG Z, ZHANG M, et al. Ultrathin and air-stable lithium metal anodes with superlong cycling life in ether/ester-based electrolytes[J]. Energy & Environmental Materials, 2023, 6(4): e12534.
[50] [50] MASHTALIR O, NGUYEN M, BODOIN E, et al. High-purity lithium metal films from aqueous mineral solutions[J]. ACS Omega, 2018, 3(1): 181-187.
[51] [51] HU M, TONG Z, CUI C, et al. Facile, atom-economic, chemical thinning strategy for ultrathin lithium foils[J]. Nano Letters, 2022, 22(7): 3047-3053.
[54] [54] HE R, WANG Y, ZHANG C, et al. Sequential and dendrite-free Li plating on Cu foil enabled by an ultrathin yolk–shell SiOx/C@C layer[J]. Advanced Energy Materials, 2023, 13(17): 2204075.
[55] [55] LI C, IQBAL M, LIN J, et al. Electrochemical deposition: An advanced approach for templated synthesis of nanoporous metal architectures[J]. Accounts of Chemical Research, 2018, 51(8): 1764-1773.
[56] [56] GOLE J L, SHI Z, LIU M. Generation of highly porous Li —Mg and Li —Zn alloys from kinetically controlled lithiation[J]. Philosophical Magazine B, 2001, 81(2): 119-131.
[57] [57] GONG M, YU R, ZHOU C, et al. Mechanically robust current collector with gradient lithiophilicity induced by spontaneous lithium ion diffusion for stable lean-lithium metal batteries[J]. ACS Nano, 2024, 18(31): 20648-20658.
[58] [58] LIU S, MA Y, ZHOU Z, et al. Inducing uniform lithium nucleation by integrated lithium-rich Li-In anode with lithiophilic 3D framework[J]. Energy Storage Materials, 2020, 33: 423-431.
[59] [59] ZHAO Y, LI S, HUANG X, et al. Vacuum evaporation plating enabling ≤10 m ultrathin lithium foils for lithium metal batteries[J]. Small, 2024, 20(34): 2312129.
[60] [60] HO A S, WESTOVER A S, BROWNING K, et al. Comparing the purity of rolled versus evaporated lithium metal films using X-ray microtomography[J]. ACS Energy Letters, 2022, 7(3): 1120-1124.
Get Citation
Copy Citation Text
LIN Jiaojuan, ZHU Jing. Frontier exploration and application prospects of thin lithium manufacturing processes[J]. Journal of Functional Materials and Devices, 2025, 31(4): 272
Received: Mar. 4, 2025
Accepted: Aug. 22, 2025
Published Online: Aug. 22, 2025
The Author Email: LIN Jiaojuan (2284701291@qq.com)