Laser & Optoelectronics Progress, Volume. 59, Issue 16, 1610001(2022)

Depth Estimation from Single-Frame Fringe Projection Patterns Based on R2U-Net

Mengkai Yuan1, Xinjun Zhu2、*, and Linpeng Hou1
Author Affiliations
  • 1School of Control Science and Engineering, Tiangong University, Tianjin 300387, China
  • 2School of Artificial Intelligence, Tiangong University, Tianjin 300387, China
  • show less
    Figures & Tables(17)
    Recurrent residual convolutional neural network based on U-Net
    Recurrent residual convolutional units and unfolded recurrent convolutional units
    Schematic diagram of proposed algorithm
    Simulated projection fringe pattern and simulated depth map. (a) Simulated projection fringe pattern; (b) simulated depth map
    Simulated training dataset
    Error of R2U-Net and U-Net under free noise testing samples
    Depth map prediction result of simulated data. (a) Simulated fringe pattern of test input; (b) depth map corresponding to fringe pattern; (c) prediction result of U-Net; (d) prediction result of R2U-Net; (e) comparison of 270th row of prediction result
    Comparison of R2U-Net method and FTM method. (a) Depth map corresponding to fringe pattern; (b) prediction result of R2U-Net; (c) result of FTM; (d) comparison of the 270th row of the prediction result
    Error of R2U-Net and U-Net under noisy testing samples
    Depth map prediction result of noise simulated data. (a) Simulated fringe pattern of test input; (b) depth map corresponding to fringe pattern; (c) prediction result of U-Net; (d) prediction result of R2U-Net; (e) comparison of 270th row of prediction result
    Comparison of R2U-Net method and FTM method (Noise simulation data). (a) Depth map corresponding to fringe pattern; (b) prediction result of R2U-Net; (c) result of FTM; (d) comparison of 270th row of prediction result
    Experimental training dataset
    Error of R2U-Net and U-Net under experimental testing samples
    Depth map prediction result of experimental sample. (a) Experimental fringe pattern of test input; (b) depth map corresponding to fringe pattern; (c) prediction result of U-Net; (d) prediction result of R2U-Net; (e) comparison of 310th row of prediction result
    Depth map prediction result of the second experimental sample. (a) Simulated fringe pattern of the test input; (b) depth map corresponding to fringe pattern; (c) prediction result of U-Net; (d) prediction result of R2U-Net; (e) comparison of 320th row of prediction result
    • Table 1. Comparison of three loss functions

      View table

      Table 1. Comparison of three loss functions

      Loss functionMSE
      MSE1.71×10-6
      SSIM2.22×10-6
      SSIM-MAE2.17×10-6
    • Table 2. Performance evaluation of the two models

      View table

      Table 2. Performance evaluation of the two models

      ModelMAESSIMMSE
      U-Net8.62×10-30.984951.24×10-3
      R2U-Net7.12×10-30.987751.08×10-3
    Tools

    Get Citation

    Copy Citation Text

    Mengkai Yuan, Xinjun Zhu, Linpeng Hou. Depth Estimation from Single-Frame Fringe Projection Patterns Based on R2U-Net[J]. Laser & Optoelectronics Progress, 2022, 59(16): 1610001

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Image Processing

    Received: May. 10, 2021

    Accepted: Jun. 27, 2021

    Published Online: Jul. 22, 2022

    The Author Email: Xinjun Zhu (xinjunzhu@tiangong.edu.cn)

    DOI:10.3788/LOP202259.1610001

    Topics