Infrared and Laser Engineering, Volume. 51, Issue 5, 20220312(2022)

Integrated chalcogenide frequency combs (Invited)

Di Xia1,2, Jiaxin Zhao1,2, Jiayue Wu1,2, Zifu Wang1,2, Bin Zhang1,2, and Zhaohui Li1,2,3
Author Affiliations
  • 1Guangdong Provincial Key Laboratory of Optoelectronic Information Processing Chips and Systems, School of Electrical and Information Technology, Sun Yat-sen University, Guangzhou 510275, China
  • 2Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, Guangzhou 510275, China
  • 3Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519000, China
  • show less
    References(43)

    [1] Chang L, Liu S, Bowers J E. Integrated optical frequency comb technologies[J]. Nature Photonics, 16, 95-108(2022).

    [2] Diddams S A, Vahala K, Udem T. Optical frequency combs: Coherently uniting the electromagnetic spectrum[J]. Science, 369, eaay3676(2020).

    [3] Papp S B, Beha K, Del’Haye P, et al. Microresonator frequency comb optical clock[J]. Optica, 1, 10-14(2014).

    [4] Spencer D T, Drake T, Briles T C, et al. An optical-frequency synthesizer using integrated photonics[J]. Nature, 557, 81-85(2018).

    [5] Coddington I, Newbury N, Swann W. Dual-comb spectroscopy[J]. Optica, 3, 414-426(2016).

    [6] Riemensberger J, Lukashchuk A, Karpov M, et al. Massively parallel coherent laser ranging using a soliton microcomb[J]. Nature, 581, 164-170(2020).

    [7] Geng Y, Zhou H, Han X, et al. Coherent optical communications using coherence-cloned Kerr soliton microcombs[J]. Nature Communications, 13, 1-8(2022).

    [8] Chou C W, Collopy A L, Kurz C, et al. Frequency-comb spectroscopy on pure quantum states of a single molecular ion[J]. Science, 367, 1458-1461(2020).

    [9] Kippenberg T J, Gaeta A L, Lipson M, et al. Dissipative Kerr solitons in optical microresonators[J]. Science, 361, eaan8083(2018).

    [10] Gaeta A L, Lipson M, Kippenberg T J. Photonic-chip-based frequency combs[J]. Nature Photonics, 13, 158-169(2019).

    [11] Wang W, Wang L, Zhang W. Advances in soliton microcomb generation[J]. Advanced Photonics, 2, 034001(2020).

    [12] Chen Haojing, Xiao Yunfeng. Applications of integrated microresonator-based optical frequency combs in precision measurement (Invited)[J]. Infrared and Laser Engineering, 50, 20210560(2021).

    [13] Jung H, Yu S P, Carlson D R, et al. Tantala Kerr nonlinear integrated photonics[J]. Optica, 8, 811-817(2021).

    [14] Chang L, Xie W, Shu H, et al. Ultra-efficient frequency comb generation in AlGaAs-on-insulator microresonators[J]. Nature Communications, 11, 1331(2020).

    [15] Liu J, Huang G, Wang R N, et al. High-yield, wafer-scale fabrication of ultralow-loss, dispersion-engineered silicon nitride photonic circuits[J]. Nature Communications, 12, 2236(2021).

    [16] Liu X, Gong Z, Bruch A W, et al. Aluminum nitride nanophotonics for beyond-octave soliton microcomb generation and self-referencing[J]. Nature Communications, 12, 5428(2021).

    [17] Griffith A G, Lau R K, Cardenas J, et al. Silicon-chip mid-infrared frequency comb generation[J]. Nature Communications, 6, 6299(2015).

    [18] Yang K Y, Oh D Y, Lee S H, et al. Bridging ultrahigh-Q devices and photonic circuits[J]. Nature Photonics, 12, 297-302(2018).

    [19] He Y, Yang Q F, Ling J, et al. Self-starting bi-chromatic LiNbO3 soliton microcomb[J]. Optica, 6, 1138-1144(2019).

    [20] Zheng Y, Sun C, Xiong B, et al. Integrated gallium nitride nonlinear photonics[J]. Laser & Photonics Reviews, 15, 2100071(2021).

    [21] Guidry M A, Lukin D M, Yang K Y, et al. Quantum optics of soliton microcombs[J]. Nature Photonics, 16, 52-58(2022).

    [22] Grassani D, Tagkoudi E, Guo H, et al. Mid infrared gas spectroscopy using efficient fiber laser driven photonic chip-based supercontinuum[J]. Nature Communications, 10, 1553(2019).

    [23] Bao C, Yuan Z, Wu L, et al. Architecture for microcomb-based GHz-mid-infrared dual-comb spectroscopy[J]. Nature Communications, 12, 6573(2021).

    [24] Wang C, Fang Z, Yi A, et al. High-Q microresonators on 4 H-silicon-carbide-on-insulator platform for nonlinear photonics[J]. Light: Science & Applications, 10, 1-11(2021).

    [25] Eggleton B J, Luther-Davies B, Richardson K. Chalcogenide photonics[J]. Nature Photonics, 5, 141-148(2011).

    [26] Yu Y, Gai X, Ma P, et al. Experimental demonstration of linearly polarized 2–10 μm supercontinuum generation in a chalcogenide rib waveguide[J]. Optics Letters, 41, 958-961(2016).

    [27] Ahmad R, Rochette M. All-chalcogenide Raman-parametric laser, wavelength converter, and amplifier in a single microwire[J]. IEEE Journal of Selected Topics in Quantum Electronics, 20, 299-304(2014).

    [28] Morrison B, Casas-Bedoya A, Ren G, et al. Compact Brillouin devices through hybrid integration on silicon[J]. Optica, 4, 847-854(2017).

    [29] Zhang B, Zeng P, Yang Z, et al. On-chip chalcogenide microresonators with low-threshold parametric oscillation[J]. Photonics Research, 9, 1272-1279(2021).

    [30] Kim D G, Han S, Hwang J, et al. Universal light-guiding geometry for on-chip resonators having extremely high Q-factor[J]. Nature Communications, 11, 5933(2020).

    [31] Jiang W C, Li K, Gai X, et al. Ultra-low-power four-wave mixing wavelength conversion in high-Q chalcogenide microring resonators[J]. Optics Letters, 46, 2912-2915(2021).

    [32] Yang, Z, Zhang R, Wang Z, et al. High-Q, submicron-confined chalcogenide microring resonators[J]. Optics Express, 29, 33225-33233(2021).

    [33] Du Q, Huang Y, Li J, et al. Low-loss photonic device in Ge–Sb–S chalcogenide glass[J]. Optics Letters, 41, 3090-3093(2016).

    [34] [34] Xia D, Yang Z, Zeng P, et al. Soliton Microcombs in Integrated Chalcogenide Micresonats [J]. arXiv, 2022: 2202.05992.

    [35] Song J, Guo X, Peng W, et al. Stimulated Brillouin scattering in low-loss Ge25Sb10S65 chalcogenide waveguides[J]. Journal of Lightwave Technology, 39, 5048-5053(2021).

    [36] Shang H, Sun D, Zhang M, et al. On-chip detector based on supercontinuum generation in chalcogenide waveguide[J]. Journal of Lightwave Technology, 39, 3890-3895(2021).

    [37] Xia D, Huang Y F, Zhang B, et al. Engineered Raman lasing in photonic integrated chalcogenide microresonators[J]. Laser & Photonics Reviews, 16, 2100443(2022).

    [38] [38] Xia D, Zeng P, Yang Z, et al. Kerr frequency comb generation in photonic integrated GeAsS chalcogenide micresonats [C]CLEO: Science Innovations, 2020: SW4J. 2.

    [39] [39] Xia D, Yang Z, Zeng P, et al. Integrated GeSbS chalcogenide micresonat on chip f nonlinear photonics [C]Conference on Lasers ElectroOpticsPacific Rim, 2020: C3C_1.

    [40] Xue X, Xuan Y, Liu Y, et al. Mode-locked dark pulse Kerr combs in normal-dispersion microresonators[J]. Nature Photonics, 9, 594-600(2015).

    [41] Xue X, Xuan Y, Wang P H, et al. Normal-dispersion microcombs enabled by controllable mode interactions[J]. Laser & Photonics Reviews, 9, L23-L28(2015).

    [42] Tan T, Yuan Z, Zhang H, et al. Multispecies and individual gas molecule detection using Stokes solitons in a graphene over-modal microresonator[J]. Nature Communications, 12, 1-8(2021).

    [43] Bai Y, Zhang M, Shi Q, et al. Brillouin-Kerr soliton frequency combs in an optical microresonator[J]. Physical Review Letters, 126, 063901(2021).

    Tools

    Get Citation

    Copy Citation Text

    Di Xia, Jiaxin Zhao, Jiayue Wu, Zifu Wang, Bin Zhang, Zhaohui Li. Integrated chalcogenide frequency combs (Invited)[J]. Infrared and Laser Engineering, 2022, 51(5): 20220312

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Special issue—Microcavity optical frequency comb technology

    Received: May. 7, 2022

    Accepted: --

    Published Online: Jun. 14, 2022

    The Author Email:

    DOI:10.3788/IRLA20220312

    Topics