Laser & Optoelectronics Progress, Volume. 57, Issue 22, 221501(2020)

Improved Classroom Face Recognition Algorithm Based on InsightFace and Its Application

Xichu Tian, Hansong Su, Gaohua Liu*, and Tengteng Liu
Author Affiliations
  • School of Electrical and Information Engineering, Tianjin University, Tianjin 300072, China
  • show less
    Figures & Tables(17)
    Mobile-Block structure with stride of 1.(a) MobileFaceNet; (b) Dual-MobileFaceNet
    Mobile-Block structure with stride of 2. (a) MobileFaceNet; (b) Dual-MobileFaceNet
    Schematic of Dual-MobileFaceNet structure
    Schematic of double classifier structure
    Examples of self-made training dataset
    Classroom scene. (a) Real scene; (b) sketch map
    Interface connection of Jetson TX2
    Recognition results of proposed algorithm. (a) 8-people video; (b)16-people video
    Recognition accuracy confusion matrix of 8-people video. (a) InsightFace; (b) Double classifier
    Diagram of different face sizes. (a) Big face; (b) medium face; (c) small face
    Recognition accuracy of different networks for different sizes of faces
    Recognition accuracy of different algorithms for different sizes of faces
    • Table 1. Network structure of Dual-MobileFaceNet

      View table

      Table 1. Network structure of Dual-MobileFaceNet

      Input size/Numberof channelsTypeOutput size/Numberof channelsOperationsnPad
      112×112/3Convolution56×56/643×3 Conv211
      56×56/64Convolution56×56/643×3 dw_Conv111
      56×56/64Dual-Block56×56/128+2k1×1pw_Conv3×3dw_Conv1×1Linear_pw_Conv12
      56×56/128+2kMobile-Block28×28/641×1pw_Conv3×3dw_Conv1×1Linear_pw_Conv211
      28×28/64Dual-Block28×28/128+6k1×1pw_Conv3×3dw_Conv1×1Linear_pw_Conv16
      28×28/128+6kMobile-Block14×14/1281×1pw_Conv3×3dw_Conv1×1Linear_pw_Conv211
      14×14/128Dual-Block14×14/256+4k1×1pw_Conv3×3dw_Conv1×1Linear_pw_Conv14
      14×14/256+4kMobile-Block7×7/1281×1pw_Conv3×3dw_Conv1×1Linear_pw_Conv211
      7×7/128Dual-Block7×7/256+2k1×1pw_Conv3×3dw_Conv1×1Linear_pw_Conv12
      7×7/256+2kConvolution7×7/5121×1 pw_Conv110
      7×7/512Convolution1×1/5127×7 Linear_Conv110
      1×1/512Convolution1×1/1281×1 Linear_pw_Conv110
    • Table 2. Comparison of experiment results of different networks

      View table

      Table 2. Comparison of experiment results of different networks

      NetworkRecognition accuracy /%Speed /(frame·s-1)Model Size /MB
      AgeDBCFP_FPCFP_FFLFWCALFW
      ResNet-101[13]97.2895.1199.6599.7196.6542.64250
      ResNet-50[13]96.0394.0699.6299.5295.3670.84174.5
      DenseNet-201(k=32)[12]96.6894.8399.6299.6896.04100.17161.8
      DenseNet-169(k=32)[12]95.3893.6699.0198.8695.28120.34114.4
      ShuffleNet(1×,g=3)[22]89.2789.0997.7598.7093.06410.787.4
      MobileNet-v1[20]88.6588.5497.0698.4393.01206.6413.7
      MobileNet-v2[21]88.8188.5397.3698.3892.88230.718.6
      MobileFaceNet[11]92.9589.4698.0398.9693.89432.414.1
      Dual-MobileFaceNet93.9491.1698.6899.1894.02326.358.8
    • Table 3. Recognition accuracy comparison of different algorithms%

      View table

      Table 3. Recognition accuracy comparison of different algorithms%

      AlgorithmLFWCFP-FPAgeDB-30
      DeepFace[3]95.5387.4689.61
      Deep FR[23]96.0488.2690.13
      DeepID2[4]96.1487.8590.26
      FaceNet[5]96.9588.2090.69
      SphereFace[6]97.5890.0391.84
      CosFace[7]98.4390.7592.33
      InsightFace[8]99.1891.1693.94
      O-Double classifier99.1291.2193.22
      Double classifier99.4693.3395.88
    • Table 4. Experimental results of different networks on pan tilt video

      View table

      Table 4. Experimental results of different networks on pan tilt video

      NetworkRecognition accuracy /%Speed /(frame·s-1)FLOPS/106
      8-people18-people8-people18-people
      ResNet-101[13]97.0894.142.164.3722.69×103
      ResNet-50[13]95.9691.511.282.6112.34×103
      DenseNet-201[12]96.7894.981.162.368.5×103
      DenseNet-169[12]95.2791.690.891.816.6×103
      ShuffleNet[22]92.0587.530.120.26591
      MobileNet-v1[20]91.1285.600.160.351.1×103
      MobileNet-v2[21]91.9686.330.130.281.0×103
      MobileFaceNet[11]92.8388.770.100.21439.8
      Dual-MobileFaceNet96.2494.680.140.291.0×103
    • Table 5. Recognition accuracy of different algorithms%

      View table

      Table 5. Recognition accuracy of different algorithms%

      Algorithm8-people18-people
      DeepFace[3]87.5383.67
      Deep FR[23]88.5484.27
      DeepID2[4]88.9484.25
      FaceNet[5]89.3585.33
      SphereFace[6]90.5887.68
      CosFace[7]91.8390.75
      InsightFace[8]93.6991.68
      Double classifier96.2494.68
    Tools

    Get Citation

    Copy Citation Text

    Xichu Tian, Hansong Su, Gaohua Liu, Tengteng Liu. Improved Classroom Face Recognition Algorithm Based on InsightFace and Its Application[J]. Laser & Optoelectronics Progress, 2020, 57(22): 221501

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Machine Vision

    Received: Feb. 17, 2020

    Accepted: Mar. 25, 2020

    Published Online: Nov. 5, 2020

    The Author Email: Gaohua Liu (suppig@126.com)

    DOI:10.3788/LOP57.221501

    Topics