Optics and Precision Engineering, Volume. 33, Issue 3, 438(2025)

Binocular vision-based trackside pantograph anomaly detection under strong environmental noise

Jin ZHAO1,2, Yin GUO2, Shibin YIN2, Lei GUO2, and Jigui ZHU1、*
Author Affiliations
  • 1State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin300072, China
  • 2ISVision(Hangzhou) Technology Co., Ltd., Hangzhou31005, China
  • show less
    Figures & Tables(12)
    Framework of binocular vision-based pantograph abnormality detection system
    Disparity space map
    Cost calculation method
    Cost calculation search space expand
    Schematic diagram of cost aggregation calculation
    Acquisition of sample data
    Experimental environment
    Simulation experiment results of laboratory environment noise
    Comparison of disparity map
    • Table 1. Algorithm accuracy evaluation in ideal environmental conditions

      View table
      View in Article

      Table 1. Algorithm accuracy evaluation in ideal environmental conditions

      AlgorithmSampleAvg ICP RMSE/mmMinimum residual
      Measured value/mmTrue value/mmAvg MRE/mm
      SGMI1/I2/I3/I40.2424.05/24.82/24.78/25.2923.6/24.6/24.9/25.10.25
      CostFilter0.2223.82/24.47/24.71/25.390.21
      PatchMatch0.2023.44/25.04/25.27/24.820.31
      DLNR0.1623.83/24.18/24.46/24.890.28
      Selective-IGEV0.1823.79/24.81/24.74/24.990.17
      Ours0.2023.36/23.87/24.69/25.220.21
    • Table 2. Accuracy test data of laboratory environment disturbance simulation experiment

      View table
      View in Article

      Table 2. Accuracy test data of laboratory environment disturbance simulation experiment

      Tx/mmTz/mmRz/(°)MRE/mm
      SGMCostFilterPatchMatchDLNRSelective-IGEVOurs
      0.9//0.370.290.360.37-0.16-0.13
      1.8//0.770.450.69-0.27-0.22-0.20
      2.7//1.210.991.190.760.310.27
      3.6//1.531.441.470.830.690.21
      /0.9/-0.24-0.21-0.270.27-0.22-0.17
      /1.8/-0.45-0.44-0.55-0.38-0.420.47
      /2.7/-0.75-0.78-0.690.46-0.40-0.11
      /3.6/-1.17-1.01-0.990.33-0.680.22
      //0.20.450.340.410.430.330.14
      //0.40.830.760.75-0.290.59-0.12
      //0.61.351.281.200.540.660.16
      //0.81.651.541.350.990.640.11
      1.41.40.41.771.521.660.680.430.46
      ///0.560.470.510.360.120.10
      ///0.930.850.850.420.460.22
    • Table 3. Algorithm accuracy and efficiency evaluation at worksite

      View table
      View in Article

      Table 3. Algorithm accuracy and efficiency evaluation at worksite

      SampleTrue value/mmMRE/mm
      SGMCostFilterPatchMatchDLNRSelective-IGEVOurs
      A29.400.710.67-0.350.26-0.19-0.12
      B38.90-0.650.790.940.620.430.18
      C40.100.890.740.670.810.630.20
      D36.60-1.31-0.670.950.49-0.330.38
      E40.200.07-0.120.21-0.170.10-0.17
      F34.20-1.14-0.99-1.23-0.46-0.44-0.35
      G34.80-0.41-0.37-0.96-0.37-0.640.34
      H38.200.400.670.370.320.24-0.19
      Average-0.700.630.710.440.380.24
      SampleTrue value/mmICP RMSE/mm
      SGMCostFilterPatchMatchDLNRSelective-IGEVOurs
      A29.401.211.770.940.250.130.19
      B38.900.971.450.390.140.270.22
      C40.101.800.390.290.250.470.17
      D36.600.741.881.610.300.650.12
      E40.200.921.320.620.390.240.31
      F34.201.460.341.130.180.040.22
      G34.801.430.030.230.430.080.16
      H38.201.650.950.960.350.620.22
      Average-1.271.020.770.290.310.20
      SampleTrue value/mmTime consume/ms
      SGMCostFilterPatchMatchDLNRSelective-IGEVOurs
      A29.401121592162140251579
      B38.901311642222266252991
      C40.101221632342245254283
      D36.601271542312258254790
      E40.201181522142226249886
      F34.201111552142234249381
      G34.801241662232241245886
      H38.201431512332247250493
      Average-1241582232232251186
    Tools

    Get Citation

    Copy Citation Text

    Jin ZHAO, Yin GUO, Shibin YIN, Lei GUO, Jigui ZHU. Binocular vision-based trackside pantograph anomaly detection under strong environmental noise[J]. Optics and Precision Engineering, 2025, 33(3): 438

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Sep. 2, 2024

    Accepted: --

    Published Online: Apr. 30, 2025

    The Author Email:

    DOI:10.37188/OPE.20253303.0438

    Topics