Laser & Optoelectronics Progress, Volume. 62, Issue 10, 1015003(2025)
Dynamic ORB-SLAM3 Optimization Method for Adaptive Separation of Dynamic Targets
Fig. 3. Comparisons between improved and original algorithm for extracting feature points in TUM dataset. (a) ORB-SLAM3 algorithm; (b) GCNv2 algorithm
Fig. 7. Comparison of translation error between proposed algorithm and ORB-SLAM3. ORB-SLAM3: (a) walking-rpy, (b) walking-halfsphere, (c) walking-static, (d) walking-xyz; proposed algorithm: (e) walking-rpy, (f) walking-halfsphere, (g) walking-static, (h) walking-xyz
Fig. 8. Comparisons of trajectory errors between proposed algorithm and ORB-SLAM3. ORB-SLAM3: (a) walking-rpy, (b) walking-halfsphere, (c) walking-static, (d) walking-xyz; proposed algorithm: (e) walking-rpy, (f) walking-halfsphere, (g) walking-static, (h) walking-xyz
Fig. 9. Dense 3D point cloud map construction. (a) ORB-SLAM3 global dense map construction; (b) improved dense global map construction; (c) before local filtering of dynamic feature points; (d) after partial filtering of dynamic feature points
|
|
|
|
|
|
Get Citation
Copy Citation Text
Tao Song, Daiheng Yue, Yichen Yang, Ting Chen, Yuan Gong. Dynamic ORB-SLAM3 Optimization Method for Adaptive Separation of Dynamic Targets[J]. Laser & Optoelectronics Progress, 2025, 62(10): 1015003
Category: Machine Vision
Received: Sep. 10, 2024
Accepted: Nov. 5, 2024
Published Online: Apr. 22, 2025
The Author Email: Tao Song (tsong@cqut.edu.cn)
CSTR:32186.14.LOP241972