Journal of Quantum Optics, Volume. 31, Issue 1, 11001(2025)

Application of FPGAs in Frequency Locking of the 319 nm Ultra-Violet Single-Frequency Laser System

SU Wenjing1, WEI Yirong1, HOU Xiaokai1, WANG Yuewei1, HE Jun1,2, and WANG Junmin1,2、*
Author Affiliations
  • 1State Key Laboratory of Quantum Optics Technologies and Devices, and Institute of Opto-Electronics, Shanxi University, Taiyuan, 030006
  • 2Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, 030006
  • show less
    References(31)

    [1] [1] VASILYEV S, NEVSKY A, ERNSTING I, et al. Compact all-solid-state continuous-wave single-frequency UV source with frequency stabilization for laser cooling of Be+ ions[J]. Appl Phys B, 2011, 103:27-33. DOI: 10.1007/s00340-011-4435-1.

    [2] [2] THOUMANY P, HNSCH T, STANIA G, et al. Optical spectroscopy of rubidium Rydberg atoms with a 297 nm frequency-doubled dye laser[J]. Opt Lett, 2009, 34:1621-1623.

    [3] [3] KOELEMEIJ J C J, HOGERVORST W, VASSEN W. High-power frequency-stabilized laser for laser cooling of metastable helium at 389 nm[J]. Rev Sci Instrum, 2005, 76:033104. DOI: 10.1063/1.1865752.

    [4] [4] TONG D, FAROOQI S M, STANOJEVIC J, et al. Local blockade of Rydberg excitation in an ultra-cold gas[J]. Phys Rev Lett, 2004, 93:063001. DOI: 10.1103/PhysRevLett.93.063001.

    [5] [5] WANG J Y, BAI J D, HE J, et al. Single-photon cesium Rydberg excitation spectroscopy using 318.6-nm UV laser and room-temperature vapor cell[J]. Opt Express, 2017, 25:22510-22518. DOI: 10.1364/OE.25.022509.

    [6] [6] BAI J D, WANG J Y, LIU S, et al. Autler-Townes doublet in single-photon Rydberg spectra of cesium atomic vapor with a 319 nm UV laser[J]. Appl Phys B, 2019, 125:33. DOI: 10.1007/s00340-019-7151-x.

    [8] [8] WILSON A C, OSPELKAUS C, VANDEVENDER A P. A 750 mW, continuous-wave, solid-state laser source at 313 nm for cooling and manipulating trapped 9Be+ ions[J]. Appl Phys B, 2011, 105:741-748. DOI: 10.1007/s00340-011-4771-1.

    [9] [9] LO H Y, ALONSO J, KIENZLER D, et al. All-solid-state continuous-wave laser systems for ionization, cooling and quantum state manipulation of beryllium ions[J]. Appl Phys B, 2014, 114:17-25. DOI: 10.1007/s00340-013-5605-0.

    [10] [10] HANKIN A M, JAU Y Y, PARAZZOLI L P, et al. Two-atom Rydberg blockade using direct 6S to nP excitation[J]. Phys Rev A, 2014, 89:033416. DOI: 10.1103/PhysRevA.89.033416.

    [11] [11] BRIDGE E M, KEEGAN N C, BOUNDS A D, et al. Tunable cw UV laser with <35 kHz absolute frequency instability for precision spectroscopy of Sr Rydberg states[J]. Opt Express, 2016, 24:2281-2292. DOI: 10.1364/OE.24.002281.

    [12] [12] RENGELINK R J, NOTERMANS R P M J W, VASSEN W. A simple 2 W continuous-wave laser system for trapping ultracold metastable helium atoms at the 319.8 nm magic wavelength[J]. Appl Phys B, 2016, 122:122-129. DOI: 10.1007/s00340-016-6395-y.

    [13] [13] WANG J Y, BAI J D, HE J, et al. Realization and characterization of single-frequency tunable 637.2 nm high-power laser[J]. Opt Commun, 2016, 370:150-155. DOI: 10.1016/j.optcom.2016.02.067.

    [14] [14] WANG J Y, BAI J D, HE J, et al. Development and characterization of a 2.2 W narrow-linewidth 318.6 nm ultraviolet laser[J]. J Opt Soc Am B, 2016, 33:2020-2025. DOI: 10.1364/JOSAB.33.002020.

    [15] [15] BAI J D, WANG J Y, HE J, et al. Electronic sideband locking of a broadly tunable 318.6nm ultraviolet laser to an ultrastable optical cavity[J]. J Opt, 2017, 19:045501. DOI: 10.1088/2040-8986/aa5a8c.

    [16] [16] BRITZGER M, FRIEDRICH D, KROKER S, et al. Pound-Drever-Hall error signals for the length control of three-port grating coupled cavities[J]. Appl Opt, 2011, 50:4340-4346. DOI: 10.1364/AO.50.004340.

    [17] [17] SPENCER D T, DAVENPORT M L, KOMLJENOVIC T, et al. Stabilization of heterogeneous silicon lasers using Pound-Drever-Hall locking to Si3N4 ring resonators[J]. Opt Express, 2016, 24:13511-13517. DOI: 10.1364/OE.24.013511.

    [18] [18] GATTI D, GALZERANO G, JANNER D, et al. Fiber strain sensor based on a pi-phase-shifted Bragg grating and the Pound-Drever-Hall technique[J]. Opt Express, 2008, 16:1945-1950. DOI: 10.1364/OE.16.001945.

    [19] [19] DREVER R W P, HALL J L, KOWALSKI F V, et al. Laser phase and frequency stabilization using an optical resonator[J]. Appl Phys B, 1983, 31:97-105.

    [20] [20] BLACK ERIC D. An introduction to Pound-Drever-Hall laser frequency stabilization[J]. Am J Phys, 2000, 69:79-87. DOI: 10.1119/1.1286663.

    [21] [21] ZENG Y, FU Z, LIU Y, et al. Stabilizing a laser frequency by the Pound-Drever-Hall technique with an acousto-optic modulator[J]. Appl Opt, 2021, 60:1159-1163. DOI: 10.1364/AO.415011.

    [22] [22] WANG X, FENG L, XU J, et al. Steady-state frequency-tracking distortion in the digital Pound-Drever-Hall technique[J]. Appl Opt, 2020, 59:1347-1352. DOI: 10.1364/AO.379557.

    [23] [23] ZEYEN M, AFFOLTER L, ABDOU AHMED M, et al. Injection-seeded high-power Yb: YAG thin-disk laser stabilized by the Pound-Drever-Hall method[J]. Opt Express, 2023, 31:29558-29572. DOI: 10.1364/OE.498023.

    [24] [24] HANSCH T W, COUILLAUD B. Laser frequency stabilization by polarization spectroscopy of a reflecting reference cavity[J]. Opt Commun, 1980, 35:113162. DOI: 10.1016/j.chaos.2023.113162.

    [25] [25] AVALOS V, NIE X, YANG A, et al. Field-programmable-gate-array-based digital frequency stabilization of low-phasenoise diode lasers[J]. Rev Sci Instr, 2023, 94:063001. DOI: 10.1063/5.0152305.

    [26] [26] LIU Y, XIONG H, DONG C, et al. Real-time signal processing in field programmable gate array based digital gamma-ray spectrometer[J]. Rev Sci Instr, 2020, 91:104707. DOI: 10.1063/5.0005694.

    [27] [27] UNDERWOOD K J, JONES A M, GOPINATH J T. FPGA-based phase control of acousto-optic modulator Fourier synthesis system through gradient descent phase-locking algorithm[J]. Appl Opt, 2015, 54:5624-5628. DOI: 10.1364/AO.54.005624.

    [29] [29] ROY A, SHARMA L, CHAKRABORTY I, et al. An FPGA based all-in-one function generator, lock-in amplifier and auto-relockable PID system[J]. J Instr, 2019, 14: P05012. DOI: 10.1088/1748-0221/14/05/P05012.

    [30] [30] YANG Y, SHEN Z, ZHU X, et al. FPGA-based electronic system for the control and readout of superconducting quantum processors[J]. Rev Sci Instr, 2022, 93:074701. DOI: 10.1063/5.0085467.

    [31] [31] ZOU D, LIN C, DJORDJEVIC I B. FPGA-based LDPC-coded APSK for optical communication systems[J]. Opt Express, 2017, 25:3133-3142. DOI: 10.1364/OE.25.003133.

    [32] [32] PREUSCHOFF T, SCHLOSSER M, BIRKL G. Digital laser frequency and intensity stabilization based on the STEMlab platform (originally Red Pitaya)[J]. Rev Sci Instr, 2020, 91(8):083001. DOI: 10.1063/5.0009524.

    [33] [33] WIEGAND B, LEYKAUF B, JRDENS R, et al. A versatile, user-friendly, open-source FPGA-based tool for frequency stabilization and spectroscopy parameter optimization[J]. Rev Sci Instr, 2022, 93(6):063001. DOI: 10.1063/5.0090384.

    Tools

    Get Citation

    Copy Citation Text

    SU Wenjing, WEI Yirong, HOU Xiaokai, WANG Yuewei, HE Jun, WANG Junmin. Application of FPGAs in Frequency Locking of the 319 nm Ultra-Violet Single-Frequency Laser System[J]. Journal of Quantum Optics, 2025, 31(1): 11001

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Nov. 6, 2024

    Accepted: Apr. 17, 2025

    Published Online: Apr. 17, 2025

    The Author Email: WANG Junmin (wwjjmm@sxu.edu.cn)

    DOI:10.3788/jqo20253101.1001

    Topics