Chinese Journal of Liquid Crystals and Displays, Volume. 37, Issue 2, 250(2022)

Bioinspired intelligent polymer materials for optical and thermal management

SHI Shu-kuan1、*, LI Bin-xuan1, YANG Huai2, FENG Wei1, and WANG Ling1
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    References(50)

    [5] [5] JOSE S, NARENDRANATH S B, JOSHY D, et al. Low temperature synthesis of NIR reflecting bismuth doped cerium oxide yellow nano-pigments [J]. Materials Letters, 2018, 233: 82-85.

    [6] [6] KE Y J, CHEN J W, LIN G J, et al. Smart windows: electro-, thermo-, mechano-, photochromics, and beyond [J]. Advanced Energy Materials, 2019, 9(39): 1902066.

    [7] [7] SHI M K, SHEN M M, GUO X Y, et al. Ti3C2Tx MXene-decorated nanoporous polyethylene textile for passive and active personal precision heating [J]. ACS Nano, 2021, 15(7): 11396-11405.

    [8] [8] MANDAL J, FU Y K, OVERVIG A C, et al. Hierarchically porous polymer coatings for highly efficient passive daytime radiative cooling [J]. Science, 2018, 362(6412): 315-319.

    [9] [9] WANG T, WU Y, SHI L, et al. A structural polymer for highly efficient all-day passive radiative cooling [J]. Nature Communications, 2021, 12(1): 365.

    [10] [10] TADEPALLI S, SLOCIK J M, GUPTA M K, et al. Bio-optics and bio-inspired optical materials [J]. Chemical Reviews, 2017, 117(20): 12705-12763.

    [11] [11] SHI N N, TSAI C C, CAMINO F, et al. Keeping cool: enhanced optical reflection and radiative heat dissipation in Saharan silver ants [J]. Science, 2015, 349(6245): 298-301.

    [12] [12] ANDRIENKO D. Introduction to liquid crystals [J]. Journal of Molecular Liquids, 2018, 267: 520-541.

    [13] [13] LIU J Q, GAO Y C, LEE Y J, et al. Responsive and foldable soft materials [J]. Trends in Chemistry, 2020, 2(2): 107-122.

    [18] [18] SINGH S, SRIVASTAVA J K, SINGH R K. Polymer dispersed liquid crystals [M]//THAKUR V K, KESSLER M R. Liquid Crystalline Polymers. Cham: Springer, 2016.

    [19] [19] MCCARGAR J W, ONDRIS-CRAWFORD R, WEST J L. Polymer dispersed liquid crystal infrared light shutter [J]. Journal of Electronic Imaging, 1992, 1(1): 22-28.

    [20] [20] PAN G H, YU L L, ZHANG H B, et al. Effects on thermo-optical properties of the composition of a polymer-stabilised liquid crystal with a smectic A-chiral nematic phase transition [J]. Liquid Crystals, 2008, 35(9): 1151-1160.

    [21] [21] PAN G H, CAO Y B, GUO R W, et al. Effects of the preparing condition of a polymer-stabilised liquid crystal with a smectic A-chiral nematic phase transition on its properties [J]. Liquid Crystals, 2009, 36(2): 165-172.

    [22] [22] WANG L, BISOYI H K, ZHENG Z G, et al. Stimuli-directed self-organized chiral superstructures for adaptive windows enabled by mesogen-functionalized graphene [J]. Materials Today, 2017, 20(5): 230-237.

    [23] [23] LIANG X, GUO C S, CHEN M, et al. A roll-to-roll process for multi-responsive soft-matter composite films containing CsxWO3 nanorods for energy-efficient smart window applications [J]. Nanoscale Horizons, 2017, 2(6): 319-325.

    [24] [24] GUO S M, LIANG X, ZHANG C H, et al. Preparation of a thermally light-transmittance-controllable film from a coexistent system of polymer-dispersed and polymer-stabilized liquid crystals [J]. ACS Applied Materials & Interfaces, 2017, 9(3): 2942-2947.

    [26] [26] LIANG X, GUO S M, CHEN M, et al. A temperature and electric field-responsive flexible smart film with full broadband optical modulation [J]. Materials Horizons, 2017, 4(5): 878-884.

    [27] [27] GARCIA G, BUONSANTI R, RUNNERSTROM E L, et al. Dynamically modulating the surface plasmon resonance of doped semiconductor nanocrystals [J]. Nano Letters, 2011, 11(10): 4415-4420.

    [28] [28] YAO Y J, ZHANG L M, CHEN Z, et al. Synthesis of CsxWO3 nanoparticles and their NIR shielding properties [J]. Ceramics International, 2018, 44(12): 13469-13475.

    [29] [29] HUANG Z L, CHEN S H, LV C H, et al. Infrared characteristics of VO2 thin films for smart window and laser protection applications [J]. Applied Physics Letters, 2012, 101(19): 191905.

    [30] [30] CUI Y Y, KE Y J, LIU C, et al. Thermochromic VO2 for energy-efficient smart windows [J]. Joule, 2018, 2(9): 1707-1746.

    [31] [31] LIANG X, CHEN M, WANG Q, et al. Active and passive modulation of solar light transmittance in a hybrid thermochromic soft-matter system for energy-saving smart window applications [J]. Journal of Materials Chemistry C, 2018, 6(26): 7054-7062.

    [32] [32] OH S W, KIM S H, BAEK J M, et al. Optical and thermal switching of liquid crystals for self-shading windows [J]. Advanced Sustainable Systems, 2018, 2(5): 1700164.

    [33] [33] ZHOU Y, CAI Y F, HU X, et al. Temperature-responsive hydrogel with ultra-large solar modulation and high luminous transmission for “smart window” applications [J]. Journal of Materials Chemistry A, 2014, 2(33): 13550-13555.

    [34] [34] YANG Y S, ZHOU Y, CHIANG F B Y, et al. Temperature-responsive hydroxypropylcellulose based thermochromic material and its smart window application [J]. RSC Advances, 2016, 6(66): 61449-61453.

    [35] [35] ZHOU Y, WANG S C, PENG J Q, et al. Liquid thermo-responsive smart window derived from hydrogel [J]. Joule, 2020, 4(11): 2458-2474.

    [36] [36] LI X H, LIU C, FENG S P, et al. Broadband light management with thermochromic hydrogel microparticles for smart windows [J]. Joule, 2019, 3(1): 290-302.

    [37] [37] LIU S, TSO C Y, DU Y W, et al. Bioinspired thermochromic transparent hydrogel wood with advanced optical regulation abilities and mechanical properties for windows [J]. Applied Energy, 2021, 297: 117207.

    [38] [38] ZHANG H Y, LIU J X, SHI F, et al. A novel bidirectional fast self-responsive PVA-PNIPAM/LimCsnWO3 composite hydrogel for smart window applications [J]. Chemical Engineering Journal, 2021,13:133353-1-9.

    [39] [39] WANG S C, ZHOU Y, JIANG T Y, et al. Thermochromic smart windows with highly regulated radiative cooling and solar transmission [J]. Nano Energy, 2021, 89: 106440.

    [40] [40] ZHOU Y, LAYANI M, WANG S C, et al. Fully printed flexible smart hybrid hydrogels [J]. Advanced Functional Materials, 2018, 28(9): 1705365.

    [41] [41] ZHUGE F W, ZHENG Z, LUO P, et al. Nanostructured materials and architectures for advanced infrared photodetection [J]. Advanced Materials Technologies, 2017, 2(8): 1700005.

    [42] [42] LI Z Q, CHEN W. Progress in dynamic emissivity regulation: control methods, material systems, and applications [J].Materials Chemistry Frontiers, 2021, 5(17): 6315-6332.

    [43] [43] KAHL T, BOUSACK H, SCHNEIDER E S, et al. Infrared receptors of pyrophilous jewel beetles as model for new infrared sensors [J]. Sensor Review, 2014, 34(1): 123-134.

    [44] [44] GRACHEVA E O, INGOLIA N T, KELLY Y M, et al. Molecular basis of infrared detection by snakes [J]. Nature, 2010, 464(7291): 1006-1011.

    [47] [47] LV P F, YANG X, BISOYI H K, et al. Stimulus-driven liquid metal and liquid crystal network actuators for programmable soft robotics [J]. Materials Horizons, 2021, 8(9): 2475-2484.

    [48] [48] YANG J J, ZHANG X F, ZHANG X, et al. Beyond the visible: bioinspired infrared adaptive materials [J]. Advanced Materials, 2021, 33(14): 2004754.

    [49] [49] ZHANG X A, YU S J, XU B B, et al. Dynamic gating of infrared radiation in a textile [J]. Science, 2019, 363(6427): 619-623.

    [50] [50] XU C Y, STIUBIANU G T, GORODETSKY A A. Adaptive infrared-reflecting systems inspired by cephalopods [J].Science, 2018, 359(6383): 1495-1500.

    [51] [51] ZENG S S, SHEN K Y, LIU Y, et al. Dynamic thermal radiation modulators via mechanically tunable surface emissivity [J]. Materials Today, 2021, 45: 44-53.

    [52] [52] ERGOKTAS M S, BAKAN G, STEINER P, et al. Graphene-enabled adaptive infrared textiles [J]. Nano Letters, 2020, 20(7): 5346-5352.

    [53] [53] LIU X J, TIAN Y P, CHEN F Q, et al. Continuously variable emission for mechanical deformation induced radiative cooling [J]. Communications Materials, 2020, 1(1): 95.

    [54] [54] WANG W L, ZHAO Z P, ZOU Q X, et al. Self-adaptive radiative cooling and solar heating based on a compound metasurface [J]. Journal of Materials Chemistry C, 2020, 8(9): 3192-3199.

    [55] [55] XIA Z L, FANG Z, ZHANG Z F, et al. Easy way to achieve self-adaptive cooling of passive radiative materials [J]. ACS Applied Materials & Interfaces, 2020, 12(24): 27241-27248.

    [56] [56] MANDAL J, JIA M X, OVERVIG A, et al. Porous polymers with switchable optical transmittance for optical and thermal regulation [J]. Joule, 2019, 3(12): 3088-3099.

    [57] [57] MANDAL J, DU S C, DONTIGNY M, et al. Li4Ti5O12: a visible-to-infrared broadband electrochromic material for optical and thermal management [J]. Advanced Functional Materials, 2018, 28(36): 1802180.

    [58] [58] ONO M, CHEN K F, LI W, et al. Self-adaptive radiative cooling based on phase change materials [J]. Optics Express, 2018, 26(18): A777-A787.

    [59] [59] WANG S C, JIANG T Y, MENG Y, et al. Scalable thermochromic smart windows with passive radiative cooling regulation [J]. Science, 2021, 374(6574): 1501-1504.

    [60] [60] TANG K C, DONG K C, LI J C, et al. Temperature-adaptive radiative coating for all-season household thermal regulation [J]. Science, 2021, 374(6574): 1504-1509.

    Tools

    Get Citation

    Copy Citation Text

    SHI Shu-kuan, LI Bin-xuan, YANG Huai, FENG Wei, WANG Ling. Bioinspired intelligent polymer materials for optical and thermal management[J]. Chinese Journal of Liquid Crystals and Displays, 2022, 37(2): 250

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Nov. 30, 2021

    Accepted: --

    Published Online: Mar. 1, 2022

    The Author Email: SHI Shu-kuan (ssk@tju.edu.cn)

    DOI:10.37188/cjlcd.2021-0314

    Topics