Acta Photonica Sinica, Volume. 52, Issue 10, 1052403(2023)

Single-mode Interband Cascade Lasers(Invited)

Shuman LIU1,2、*, Jinchuan ZHANG1,2, Xiaoling YE1,2, Junqi LIU1,2, Lijun WANG1,2, Ning ZHUO1,2, Shenqiang ZHAI1,2, Yuan LI1, and Fengqi LIU1,2
Author Affiliations
  • 1Key Laboratory of Semiconductor Materials Science,Institute of Semiconductors,Chinese Academy of Sciences,Beijing 100083,China
  • 2Center of Materials Science and Opto-Electronic Engineering,University of Chinese Academy of Sciences,Beijing 100049,China
  • show less
    References(84)

    [1] YANG R. Infrared laser based on intersubband transitions in quantum wells[J]. Supperlattices and Microstructures, 17, 77-83(1995).

    [2] FAIST J, CAPASSO F, SIVCO D et al. Quantum cascade laser[J]. Science, 264, 553-556(1994).

    [3] YE Weilin, HE Xun, MENG Yongxian et al. Highly-accuract mid-infrared atmospheric methane sensor system[J]. Acta Photonica Sinica, 46, 1128003(2017).

    [4] LIU Zhiwei, LI Ziwen, LI Yafei et al. Pressure measurement and compensation for mid-infrared methane detection[J]. Acta Photonica Sinica, 47, 0230002(2018).

    [5] TÜTÜNCÜ E, NÄGELE M, BECKER S et al. Advanced photonic sensors based on interband cascade lasers for real-time mouse breath analysis[J]. ACS Sensors, 3, 1743-1749(2018).

    [6] SCHEUERMANN J, KLUCZYNSKI P, SIEMBAB K et al. Interband cascade laser arrays for simultaneous and selective analysis of C1-C5 hydrocarbons in petrochemical industry[J]. Applied Spectroscopy, 75, 336-342(2021).

    [7] VURGAFTMAN I, BEWLEY W, CANEDY C et al. Rebalancing of internally generated carriers for mid-infrared interband cascade lasers with very low power consumption[J]. Nature Communications, 2, 585(2011).

    [8] YANG Ruiqing, LI Lu, JIANG Yuchao. Interband cascade lasers: from original concept to practical devices[J]. Progress in Physics, 34, 169-190(2014).

    [11] VURGAFTMAN I, BEWLEY W, CANEDY C et al. Interband cascade lasers with low threshold powers and high output powers[J]. IEEE Journal of Selected Topics in Quantum Electronics, 19, 1200210(2013).

    [12] VURGAFTMAN I, WEIH R, KAMP M et al. Interband cascade lasers[J]. Journal of physics D: Applied Physics, 48, 123001(2015).

    [13] MEYER J, BEWLEY W, CANEY C et al. The interband cascade laser[J]. Photonics, 7, 75(2020).

    [14] ZHANG Yi, YANG Cheng'ao, SHANG Jinming et al. Research progress of semiconductor interband cascade lasers[J]. Acta Optica Sinica, 41, 0114004(2021).

    [15] ZHANG Yi, ZHANG Yu, YANG Cheng'ao et al. Research progress of 3~4 μm antimonide interband cascade laser[J]. Infrared and Laser Engineering, 47, 1003003(2018).

    [16] YANG H, YANG R, GONG J et al. Mid-infrared widely tunable single-mode interband cascade lasers based on V-coupled cavitie[J]. Optics Letters, 45, 2700-2703(2020).

    [17] KOGELNIK H, SHANK C. Coupled-wave theory of distributed feedback lasers[J]. Journal of Applied Physics, 43, 2327-2335(1972).

    [18] KIM C, KIM K, BEWLEY W et al. Single-mode distributed-feedback interband cascade laser for the midwave infrared[J]. Applied Physics Letters, 88, 191103(2006).

    [19] KIM C, KIM M, BEWLEY W et al. High-power single-mode distributed-feedback interband cascade lasers for the midwave-infrared[J]. IEEE Photonics Technology Letters, 19, 158-160(2007).

    [20] KIM C, KIM M, ABELL J et al. Mid-infrared distributed-feedback interband cascade lasers with continuous-wave single-mode emission to 80 ℃[J]. Applied Physics Letters, 101, 061104(2012).

    [21] KIM C, KIM M, BEWLEY W et al. Corrugated-sidewall interband cascade lasers with single-mode midwave-infrared emission at room temperature[J]. Applied Physics Letters, 95, 231103(2009).

    [22] BEWLEY W, KIM C, KIM M et al. High-performance interband cascade lasers for λ = 3-4.5 µm[J]. International Journal of High Speed Electronics and Systems, 21, 1250014(2012).

    [23] VURGAFTMAN I, BEWLEY W, CANEDY C et al. Interband cascade lasers with low threshold powers and high output powers[J]. IEEE Journal of Selected Topics in Quantum Electronics, 19, 1200210(2013).

    [24] KIM C, KIM M, ABELL J et al. Mid-infrared distributed-feedback interband cascade lasers[C], 8631, 86311O(2013).

    [25] MERRITT C, BEWLEY W, CANEY C et al. Distributed-feedback interband cascade lasers with reduced contact duty cycles[C], 9855, 98550C(2016).

    [26] WEIH R, NÄHLE L, HÖFLING S et al. Single mode interband cascade lasers based on lateral metal gratings[J]. Applied Physics Letters, 105, 071111(2014).

    [27] von EDLINGER M, SCHEUERMANN J, WEIH R et al. Monomode interband cascade lasers at 5.2 μm for nitric oxide sensing[J]. IEEE Photonics Technology Letters, 26, 480-482(2014).

    [28] DALLNER M, SCHEUERMANN J, NÄHLE L et al. InAs-based distributed feedback interband cascade lasers[J]. Applied Physics Letters, 107, 181105(2015).

    [29] SCHEUERMANN J, WEIH R, von EDLINGER M et al. Single-mode interband cascade lasers emitting below 2.8 μm[J]. Applied Physics Letters, 106, 161103(2015).

    [30] von EDLINGER M, SCHEUERMANN J, NÄHLE L et al. DFB interband cascade lasers for tunable laser absorption spectroscopy from 3 to 6 µm[C], 8993, 899318(2014).

    [31] KOETH J, von EDLINGER M, SCHEUERMANN J et al. Distributed feedback interband cascade lasers for applications in research and industry[C], 9382, 93820V(2015).

    [32] HOFLING S, WEIH R, DALLNER M et al. Mid-Infrared (~2.8 μm to ~7.1 μm) interband cascade lasers[C], 9550, 95500F.

    [33] KOETH J, von EDLINGER M, SCHEUERMANN J et al. Interband cascade laser sources in the mid-infrared for green photonics[C], 9767, 976712(2016).

    [34] SCHEUERMANN J, von EDLINGER M, WEIH R et al. Single-mode interband cascade laser sources for mid-infrared spectroscopic applications[C], 9855, 98550G(2016).

    [35] KOETH J, WEIH R, SCHEUERMANN J et al. Mid infrared DFB interband cascade lasers[C], 10403, 1040308(2017).

    [36] von EDLINGER M, SCHEUERMANN J, WEIH R et al. Widely-tunable interband cascade lasers for the mid-infrared[C], 9370, 93702A(2015).

    [37] WEIH R, SCHEUERMANN J. Monolithic single mode interband cascade lasers with wide wavelength tunability[J]. Applied Physics Letters, 109, 201109(2016).

    [38] FISCHER M, von EDLINGER M, NÄHLE L et al. DFB lasers for sensing applications in the[C], 7945, 79450E(3).

    [39] BECKER S, SCHEUERMANN J, WEIH R et al. Laterally coupled DFB interband cascade laser with tapered ridge[J]. Electronics Letters, 53, 743-744(2017).

    [40] SCHEUERMANN J, WEIH R, BECKER S et al. Single-mode interband cascade laser multiemitter structure for two-wavelength absorption spectroscopy[J]. Optical Engineering, 57, 011008(2018).

    [41] JIANG Y, LI L, YE H et al. InAs-based single-mode distributed feedback interband cascade lasers[J]. IEEE Journal of Quantum Electronics, 51, 2300307(2015).

    [42] YANG R, HILL J, YANG B et al. Continuous-wave operation of distributed feedback interband cascade lasers[J]. Applied Physics Letters, 84, 3699-3701(2004).

    [43] YANG R, HILL J, MANSOUR K et al. Distributed feedback mid-IR interband cascade lasers at thermoelectric cooler temperatures[J]. IEEE Journal of Selected Topics in Quantum Electronics, 13, 1074-1078(2007).

    [44] FOROUHAR S, BORGENTUN C, FREZ C et al. Reliable mid-infrared laterally-coupled distributed-feedback interband cascade lasers[J]. Applied Physics Letters, 105, 051110(2014).

    [45] BORGENTUN C, FREZ C, BRIGGS R et al. Single-mode high-power interband cascade lasers for mid-infrared absorption spectroscopy[J]. Optics Express, 23, 2446-2450(2015).

    [46] XIE F, STOCKER M, PHAM J et al. Distributed feedback interband cascade lasers with top grating and corrugated sidewalls[J]. Applied Physics Letters, 112, 131102(2018).

    [47] LEAVITT R, BRUNOA J, BRADSHAW J et al. High performance interband cascade lasers at 3.8 microns[C], 8277, 82771E(2012).

    [48] NING C, SUN R, LIU S et al. GaSb surface grating distributed feedback interband cascade laser emitting at 3.25 μm[J]. Optics Express, 30, 29007-29014(2022).

    [49] KAZARINOV R, HENRY C. Second-order distributed feedback lasers with mode selection provided by first-order radiation losses[J]. IEEE Journal of Quantum Electronics, 21, 144-150(1985).

    [50] MAKINO T, GLINSKI J. Effects of radiation loss on the performance of second-order DFB semiconductor lasers[J]. IEEE Journal of Quantum Electronics, 24, 73-82(1988).

    [51] HOLZBAUER M, SZEDLAK R, DETZ H et al. Substrate-emitting ring interband cascade lasers[J]. Applied Physics Letters, 111, 171101(2017).

    [52] LIU Jiachen, HUANG Yongzhen, HAO Youzeng et al. Numerical simulation of noise characteristics for WGM microcavity lasers(invited)[J]. Acta Photonica Sinica, 51, 0251205(2022).

    [53] KNOTIG H, HINKOV B, WEIH R et al. Continuous-wave operation of vertically emitting ring interband cascade lasers at room temperature[J]. Applied Physics Letters, 116, 131101(2020).

    [54] SZEDLAK R, HARRER A, HOLZBAUER M et al. Remote sensing with commutable monolithic laser and detector[J]. ACS Photonics, 3, 1794-1798(2016).

    [55] IGA K. Vertical-cavity surface-emitting laser: Its conception and evolution[J]. Japanese Journal of Applied Physics, 47, 1-10(2008).

    [56] WITZEL O, KLEIN A, MEFFERT C et al. VCSEL-based, high-speed, in situ TDLAS for in-cylinder water vapor measurements in IC engines[J]. Optics Express, 21, 19951-19965(2013).

    [57] VURGAFTMAN I, MEYER J. Mid-IR Vertical-cavity surface-emitting lasers[J]. IEEE Journal of Quantum Electronics, 34, 147-156(1998).

    [58] BEWLEY W, CANEDY C, KIM C et al. Room-temperatrue mid-infrared interband cascade vertical-cavity surface-emitting lasers[J]. Applied Physics Letters, 109, 151108(2016).

    [59] ANDREJEW A, SPRENGEL S, AMANN M. GaSb-based vertical-cavity surface-emitting lasers with an emission wavelength at 3 μm[J]. Optics Letters[, 41, 2799-2802(2016).

    [60] JAYARAMAN V, KOLASA B, LINDBLAD C et al. Tunable room-temperature continuous-wave mid-infrared VCSELs[C], 11300, 113000M(2020).

    [61] LANG R, DZURKO K, HARDY A et al. Theory of grating-confined broad-area lasers[J]. IEEE Journal of Quantum Electronics, 34, 2196-2209(1998).

    [62] BARTOLO R, BEWLEY W, VURGAFTMAN I et al. Mid-infrared angled-grating distributed feedback laser[J]. Applied Physics Letters, 76, 3164-3166(2000).

    [63] VURGAFTMAN I, BEWLEY W, BARTOLO R et al. Far-field characteristics of mid-infrared angled-grating distributed feedback lasers[J]. Journal of Applied Physics, 88, 6997-7005(2000).

    [64] VURGAFTMAN I, MEYER J. Photonic-crystal distributed-feedback lasers[J]. Applied Physics Letters, 78, 1475-1477(2001).

    [65] VURGAFTMAN I, MEYER J. Photonic-crystal distributed-feedback quantum cascade lasers[J]. IEEE Journal of Quantum Electronics, 38, 592-602(2002).

    [66] BEWLEY W, FELIX C, VURGAFTMAN I et al. Mid-infrared photonic-crystal distributed-feedback laser with enhanced spectral purity and beam quality[J]. Applied Physics Letters, 79, 3221-3223(2001).

    [67] FELIX C, VURGAFTMAN I, BEWLEY W et al. High-brightness mid-infrared photonic-crystal distributed-feedback lasers[J]. Journal of Modern Optics, 49, 801-810(2002).

    [68] BEWLEY W, FELIX C, VURGAFTMAN I et al. Mid-infrared photonic-crystal distributed-feedback lasers[J]. Solid-State Electronics, 46, 1557-1566(2002).

    [69] BEWLEY W, KIM C, KIM M et al. Broad-stripe midinfrared photonic-crystal distributed-feedback lasers with laser-ablation confinement[J]. Applied Physics Letters, 83, 5383-5385(2003).

    [70] KIM C, BEWLEY W, CANEDY C et al. Broad-stripe near-diffraction-limited mid-infrared laser with a second-order photonic-crystal distributed feedback grating[J]. IEEE Photonics Technology Letters, 16, 1250-1252(2004).

    [71] VURGAFTMAN I, MEYER J. Design optimization for high-brightness surface-emitting photonic-crystal distributed-feedback lasers[J]. IEEE Journal of Quantum Electronics, 39, 689-700(2003).

    [72] VURGAFTMAN I, BEWLEY W, CANEDY C et al. Broad-area optical coherence in photonic-crystal distributed-feedback lasers[C], 4992, 118-129(2003).

    [73] KIM M, KIM C, BEWLEY W et al. Surface-emitting photonic-crystal distributed-feedback laser for the midinfrared[J]. Applied Physics Letters, 88, 191105(2006).

    [74] BAI Y, DARVISH S, SLIVKEN S et al. Electrically pumped photonic crystal distributed feedback quantum cascade lasers[J]. Applied Physics Letters, 91, 141123(2007).

    [75] LIANG Y, WANG Z, WOLF J et al. Room temperature surface emission on large-area photonic crystal quantum cascade lasers[J]. Applied Physics Letters, 114, 031102(2019).

    [76] KIM C, KIM M, BEWLEY W et al. Broad-stripe, single-mode, mid-IR interband cascade laser with photonic-crystal distributed-feedback grating[J]. Applied Physics Letters, 92, 071110(2008).

    [77] KIM C, BEWLEY W, CANEDY C et al. Robust single-mode emission from mid-IR photonic crystal interband cascade lasers[C], 6900, 690003(2008).

    [78] KIM M, CANEDY C, BEWLEY W et al. Interband cascade laser emitting at λ=3.75 μm in continuous wave above room temperature[J]. Applied Physics Letters, 92, 191110(2008).

    [79] CANEDY C, ABELL J, MERRITT C et al. Pulsed and CW performance of 7-stage interband cascade lasers[J]. Optics Express, 22, 7702-7710(2014).

    [80] YOSHIDA M, ZOYSA M, ISHIZAKI K et al. Double-lattice photonic-crystal resonators enabling high-brightness semiconductor lasers with symmetric narrow-divergence beams[J]. Nature Materials, 18, 121-128(2019).

    [81] INOUE T, YOSHIDA M, GELLETA J et al. General recipe to realize photonic-crystal surface emitting lasers with 100-W-to-1-kW single-mode operation[J]. Nature Communications, 13, 3262(2022).

    [82] ZHAO X, CAO C, DU A et al. High performance interband cascade lasers with AlGaAsSb cladding layers[J]. IEEE Photonics Technology Letters, 34, 291-294(2022).

    [83] SHTERENGAS L, LIU R, STEIN A et al. Continuous wave room temperature operation of the 2 μm GaSb-based photonic crystal surface emitting diode lasers[J]. Applied Physics Letters, 122, 131102(2023).

    [84] LIANG Y, WANG Z, WOLF J et al. Room temperature surface emission on large-area photonic crystal quantum cascade lasers[J]. Applied Physics Letters, 114, 031102(2019).

    [85] LI Songru, TIAN Sicong. Dirac photonic crystal application in surface emitting lasers[J]. Journal of Optoelectronics·Laser, 33, 230-240(2022).

    [86] LI Rusong, LU Huanyu. Research on threshold gain and output optical power of photonic crystal surface emitting lasers[J]. Laser & Optoelectronics Progress, 59, 0314004(2022).

    Tools

    Get Citation

    Copy Citation Text

    Shuman LIU, Jinchuan ZHANG, Xiaoling YE, Junqi LIU, Lijun WANG, Ning ZHUO, Shenqiang ZHAI, Yuan LI, Fengqi LIU. Single-mode Interband Cascade Lasers(Invited)[J]. Acta Photonica Sinica, 2023, 52(10): 1052403

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Jun. 19, 2023

    Accepted: Jul. 18, 2023

    Published Online: Dec. 5, 2023

    The Author Email: Shuman LIU (liusm@semi.ac.cn)

    DOI:10.3788/gzxb20235210.1052403

    Topics