Optics and Precision Engineering, Volume. 32, Issue 7, 1087(2024)

Collaborative classification of hyperspectral and LiDAR data based on CNN-transformer

Haibin WU1, Shiyu DAI1, Aili WANG1、*, Iwahori YUJI2, and Xiaoyu YU3
Author Affiliations
  • 1Heilongjiang Province Key Laboratory of Laser Spectroscopy Technology and Application, College of Measurement and Control Technology and Communication Engineering, Harbin University of Science and Technology, Harbin50080, China
  • 2Department of Computer Science, Chubu University, Aichi487-8501, Japan
  • 3College of Electron and Information, University of Electronic Science and Technology of China,Zhongshan Institute, Zhongshan528400, China
  • show less
    References(22)

    [1] [1] 黄鸿, 张臻, 李政英. 面向高光谱影像分类的深度流形重构置信网络[J]. 光学 精密工程, 2021, 29(8): 1985-1998. doi: 10.37188/OPE.20212908.1985HUANGH, ZHANGZH, LIZH Y. Deep manifold reconstruction belief network for hyperspectral remote sensing image classification[J]. Opt. Precision Eng., 2021, 29(8): 1985-1998.(in Chinese). doi: 10.37188/OPE.20212908.1985

    [2] [2] 张兵. 高光谱图像处理与信息提取前沿[J]. 遥感学报, 2016, 20(5): 1062-1090. doi: 10.11834/jrs.20166179ZHANGB. Advancement of hyperspectral image processing and information extraction[J]. Journal of Remote Sensing, 2016, 20(5): 1062-1090.(in Chinese). doi: 10.11834/jrs.20166179

    [3] MA A D, FILIPPI A M, WANG Z Y et al. Fast sequential feature extraction for recurrent neural network-based hyperspectral image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 59, 5920-5937(2021).

    [4] LIU Q C, XIAO L, YANG J X et al. Content-guided convolutional neural network for hyperspectral image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 58, 6124-6137(2020).

    [5] ZAKARIA Z B, ISLAM M R. Hybrid 3DNet: Hyperspectral Image Classification with Spectral-spatial Dimension Reduction using 3D CNN[J]. International Journal of Computer Applications, 184, 6-11(2022).

    [6] [6] 冯裴裴, 杨风暴, 卫红, 等. 不确定性理论在激光雷达数据地物分类方面的应用研究进展[J]. 光电技术应用, 2015, 30(5): 1. doi: 10.3969/j.issn.1673-1255.2015.05.001FENGP P, YANGF B, WEIH, et al. Research progress on uncertain theory for feature classification with LIDAR data[J]. Electro-Optic Technology Application, 2015, 30(5): 1.(in Chinese). doi: 10.3969/j.issn.1673-1255.2015.05.001

    [7] [7] 白慧, 杨风暴. 基于高辨识复合衍生特征的LiDAR数据分类方法研究[J]. 激光与光电子学进展, 2021, 58(5): 0528001. doi: 10.3788/lop202158.0528001BAIH, YANGF B. LiDAR data classification method based on high recognition compound derivative feature[J]. Laser & Optoelectronics Progress, 2021, 58(5): 0528001.(in Chinese). doi: 10.3788/lop202158.0528001

    [8] LIU Z, MAO H Z, WU C Y et al. A ConvNet for the 2020s[C], 18, 11976-11986(2022).

    [9] DEBNATH S, HU R H et al. ConvNeXt V2: co-designing and scaling ConvNets with masked autoencoders[C], 17, 16133-16142(2023).

    [10] DOSOVITSKIY A, BEYER L, KOLESNIKOV A et al. An image is worth 16x16 words: transformers for image recognition at scale[J]. ArXiv e-Prints(2020).

    [11] DING M Y, XIAO B, CODELLA N et al. DaViT Dual Attention Vision Transformers[M]. Lecture Notes in Computer Science, 74-92(2022).

    [12] PATRO B N, NAMBOODIRI V P, SRINIVAS AGNEESWARAN V. SpectFormer: frequency and attention is what you need in a vision transformer[J]. ArXiv e-Prints(2023).

    [13] PEDERGNANA M, MARPU P R, DALLA MURA M et al. Classification of remote sensing optical and LiDAR data using extended attribute profiles[J]. IEEE Journal of Selected Topics in Signal Processing, 6, 856-865(2012).

    [14] ZHANG M M, LI W, TAO R et al. Information fusion for classification of hyperspectral and LiDAR data using IP-CNN[J]. IEEE Transactions on Geoscience and Remote Sensing, 60, 1-12(2022).

    [15] XUE Z X, TAN X, YU X C et al. Deep hierarchical vision transformer for hyperspectral and LiDAR data classification[J]. IEEE Transactions on Image Processing, 31, 3095-3110(2022).

    [16] XU X D, LI W, RAN Q et al. Multisource remote sensing data classification based on convolutional neural network[J]. IEEE Transactions on Geoscience and Remote Sensing, 56, 937-949(2018).

    [17] HONG D F, GAO L R, HANG R L et al. Deep encoder-decoder networks for classification of hyperspectral and LiDAR data[J]. IEEE Geoscience and Remote Sensing Letters, 19, 1-5(2022).

    [18] HONG D F, GAO L R, YOKOYA N et al. More diverse means better: multimodal deep learning meets remote-sensing imagery classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 59, 4340-4354(2021).

    [19] WANG X H, FENG Y N, SONG R X et al. Multi-attentive hierarchical dense fusion net for fusion classification of hyperspectral and LiDAR data[J]. Information Fusion, 82, 1-18(2022).

    [20] HE K M, FAN H Q, WU Y X et al. Momentum contrast for unsupervised visual representation learning[C], 13, 9729-9738(2020).

    [21] CHEN X L, FAN H Q, GIRSHICK R B et al. Improved baselines with momentum contrastive learning[J]. arXiv preprint(2020).

    [22] CHEN T, KORNBLITH S, NOROUZI M et al. A simple framework for contrastive learning of visual representations[C], 1597-1607(2020).

    Tools

    Get Citation

    Copy Citation Text

    Haibin WU, Shiyu DAI, Aili WANG, Iwahori YUJI, Xiaoyu YU. Collaborative classification of hyperspectral and LiDAR data based on CNN-transformer[J]. Optics and Precision Engineering, 2024, 32(7): 1087

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Oct. 23, 2023

    Accepted: --

    Published Online: May. 28, 2024

    The Author Email:

    DOI:10.37188/OPE.20243207.1087

    Topics