Chinese Optics Letters, Volume. 19, Issue 1, 011301(2021)
Intelligent algorithms: new avenues for designing nanophotonic devices [Invited] On the Cover
[16] M. H. Tahersima, K. Kojima, T. Koike-Akino, D. Jha, B. Wang, C. Lin, K. Parsons. Deep neural network inverse design of integrated photonic power splitters. Sci. Rep., 9, 1368(2019).
[18] B. Wu, K. Ding, C. T. Chan, Y. Chen. Machine prediction of topological transitions in photonic crystals(2017).
[20] I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, Y. Bengio. Generative adversarial nets, 1(2014).
[23] Y. Tang, K. Kojima, T. Koike-Akino, Y. Wang, P. Wu, M. TaherSima, D. Jha, K. Parsons, M. Qi. Generative deep learning model for a multi-level nano-optic broadband power splitter, Th1A.1(2020).
[24] H. Zhou, Y. Zhao, G. Xu, X. Wang, Z. Tan, J. Dong, X. Zhang. Chip-scale optical matrix computation for PageRank algorithm. IEEE J. Sel. Top. Quant, 26, 8300910(2020).
[29] W. J. Brouwer, J. D. Kubicki, J. O. Sofo, C. L. Giles. An investigation of machine learning methods applied to structure prediction in condensed matter(2014).
[39] W. Ma, Y. Liu. A data-efficient self-supervised deep learning model for design and characterization of nanophotonic structures. Sci. China Phys. Mech. Astron., 63, 284212(2020).
[40] Z. Liu, D. Zhu, K. Lee, A. S. Kim, L. Raju, W. Cai. Compounding meta-atoms into meta-molecules with hybrid artificial intelligence techniques. Adv. Mater., 32, 1904790(2019).
[47] E. Khoram, A. Chen, D. Liu, L. Ying, Q. Wang, M. Yuan, Z. Yu. Nanophotonic media for artificial neural inference. Opt. Lett., 7, 823(2019).
[48] J. Chang, V. Sitzmann, X. Dun, W. Heidrich, G. Wetzstein. Hybrid optical-electronic convolutional neural networks with optimized diffractive optics for image classification. Sci. Rep., 8, 12324(2018).
[51] Y. Qu, L. Jing, Y. Shen, M. Qiu, M. Soljačić. Basic instincts. ACS Photon., 6, 1168(2019).
[59] K. Chadan, P. C. Sabatier, R. G. Newton. Inverse Problems in Quantum Scattering Theory(1988).
[60] A. Y. Piggott, J. Petykiewicz, L. Su, J. Vučković. Fabrication-constrained nanophotonic inverse design. Sci. Rep., 7, 1786(2017).
[67] K. Y. Yang, J. Skarda, M. Cotrufo, A. Dutt, G. H. Ahn, M. Sawaby, D. Vercruysse, A. Arbabian, S. Fan, A. Alù, J. Vučković. Inverse-designed non-reciprocal pulse router for chip-based LiDAR. Nat. Photon., 14, 369(2020).
[68] P. Camayd-Muñoz, G. Roberts, C. Ballew, M. Debbas, A. Faraon. Inverse designed shape-reconfigurable multifunctional photonics, FW3B.2(2020).
[81] K. Liao, T. Gan, X. Hu, Q. Gong. AI-assisted on-chip nanophotonic convolver based on silicon metasurface. Nanophotonics, 9, 3315(2020).
[84] N. Padhye. Topology optimization of compliant mechanism using multi-objective particle swarm optimization, 1831(2008).
[97] M. Čepin. Assessment of Power System Reliability(2011).
[101] Y. T. Lu, Y. Q. Zhou. Design of multilayer microwave absorbers using hybrid binary lightning search algorithm and simulated annealing. Photon. Network Commun., 78, 75(2017).
[104] S. J. Russell, P. Norvig. Artificial Intelligence: A Modern Approach(2003).
[107] E. Tabli. Metaheuristics: From Design to Implementation(2009).
[123] A. Majumder, B. Shen, R. Polson, T. Andrew, R. Menon. An ultra-compact nanophotonic optical modulator using multi-state topological optimization(2017).
[136] A. K. S. Heinrich, H. Niederreiter. Monte Carlo and Quasi-Monte Carlo Methods(2006).
[137] K. Binder. Applications of the Monte Carlo method in Statistical Physics(1987).
[138] R. Y. Rubinstein, D. P. Kroese. Simulation and the Monte Carlo Method(2008).
Get Citation
Copy Citation Text
Lifeng Ma, Jing Li, Zhouhui Liu, Yuxuan Zhang, Nianen Zhang, Shuqiao Zheng, Cuicui Lu, "Intelligent algorithms: new avenues for designing nanophotonic devices [Invited]," Chin. Opt. Lett. 19, 011301 (2021)
Category: Integrated Optics
Received: Jun. 10, 2020
Accepted: Sep. 4, 2020
Published Online: Dec. 28, 2020
The Author Email: Cuicui Lu (cuicuilu@bit.edu.cn)