Acta Optica Sinica, Volume. 44, Issue 10, 1026002(2024)

Regulation Mechanisms and Recent Progress of Optical Spin Angular Momentum (Invited)

Xinxin Gou1, Songze Li1, Peng Shi1, and Xiaocong Yuan1,2、*
Author Affiliations
  • 1Nanophotonics Research Centre, Institute of Microscale Optoelectronics & State Key Laboratory of Radio Frequency Heterogeneous Integration, Shenzhen University, Shenzhen 518060, Guangdong , China
  • 2Research Institute of Intelligent Sensing, Zhejiang Lab , Hangzhou 311100, Zhejiang , China
  • show less
    References(174)

    [1] Bloch F, Hansen W W, Packard M. The nuclear induction experiment[J]. Physical Review, 70, 474-485(1946).

    [2] Purcell E M, Torrey H C, Pound R V. Resonance absorption by nuclear magnetic moments in a solid[J]. Physical Review, 69, 37-38(1946).

    [3] Baibich M N, Broto J M, Fert A et al. Giant magnetoresistance of (001)Fe/(001)Cr magnetic superlattices[J]. Physical Review Letters, 61, 2472-2475(1988).

    [4] Zavoisky E. Paramagnetic relaxation of liquid solution for perpendicular fields[J]. Journal of Physics of the USSR, 9, 211(1945).

    [5] Slonczewski J C. Current-driven excitation of magnetic multilayers[J]. Journal of Magnetism and Magnetic Materials, 159, L1-L7(1996).

    [6] Berger L. Emission of spin waves by a magnetic multilayer traversed by a current[J]. Physical Review B, 54, 9353-9358(1996).

    [7] Origin Fert A., development, future of spintronics[J]. Reviews of Modern Physics, 80, 1517-1530(2008).

    [8] Žutić I, Fabian J, Das Sarma S. Spintronics: fundamentals and applications[J]. Reviews of Modern Physics, 76, 323-410(2004).

    [9] Beth R A. Mechanical detection and measurement of the angular momentum of light[J]. Physical Review, 50, 115-125(1936).

    [10] Bliokh K Y, Rodríguez-Fortuño F J, Nori F et al. Spin-orbit interactions of light[J]. Nature Photonics, 9, 796-808(2015).

    [11] Aiello A, Banzer P, Neugebauer M et al. From transverse angular momentum to photonic wheels[J]. Nature Photonics, 9, 789-795(2015).

    [12] Bliokh K Y, Nori F. Transverse and longitudinal angular momenta of light[J]. Physics Reports, 592, 1-38(2015).

    [13] Shi P, Yang A P, Meng F F et al. Optical near-field measurement for spin-orbit interaction of light[J]. Progress in Quantum Electronics, 78, 100341(2021).

    [14] Shi P, Du L P, Yuan X C. Spin photonics: from transverse spin to photonic skyrmions[J]. Nanophotonics, 10, 3927-3943(2021).

    [15] Shi P, Du L P, Li C C et al. Transverse spin dynamics in structured electromagnetic guided waves[J]. Proceedings of the National Academy of Sciences of the United States of America, 118, e2018816118(2021).

    [16] Shi P, Lei X R, Zhang Q et al. Intrinsic spin-momentum dynamics of surface electromagnetic waves in dispersive interfaces[J]. Physical Review Letters, 128, 213904(2022).

    [17] Shi P, Du L P, Yang A P et al. Dynamical and topological properties of the spin angular momenta in general electromagnetic fields[J]. Communications Physics, 6, 283(2023).

    [18] Shi Y Z, Xu X H, Nieto-Vesperinas M et al. Advances in light transverse momenta and optical lateral forces[J]. Advances in Optics and Photonics, 15, 835(2023).

    [19] Wang S B, Chan C T. Lateral optical force on chiral particles near a surface[J]. Nature Communications, 5, 3307(2014).

    [20] Hayat A, Mueller J P, Capasso F. Lateral chirality-sorting optical forces[J]. Proceedings of the National Academy of Sciences of the United States of America, 112, 13190-13194(2015).

    [21] Shi Y Z, Zhu T T, Liu J Q et al. Stable optical lateral forces from inhomogeneities of the spin angular momentum[J]. Science Advances, 8, eabn2291(2022).

    [22] Yu X N, Li Y X, Xu B J et al. Anomalous lateral optical force as a manifestation of the optical transverse spin[J]. Laser & Photonics Reviews, 17, 2300212(2023).

    [23] Lu C F, Wang B, Fang X et al. Nanoparticle deep-subwavelength dynamics empowered by optical meron-antimeron topology[J]. Nano Letters, 24, 104-113(2024).

    [24] Shi P, Du L P, Yuan X C. Strong spin-orbit interaction of photonic skyrmions at the general optical interface[J]. Nanophotonics, 9, 4619-4628(2020).

    [25] Zhang Q, Xie Z W, Du L P et al. Bloch-type photonic skyrmions in optical chiral multilayers[J]. Physical Review Research, 3, 023109(2021).

    [26] Zhang Q, Xie Z W, Shi P et al. Optical topological lattices of Bloch-type skyrmion and meron topologies[J]. Photonics Research, 10, 947-957(2022).

    [27] Shi P, Du L P, Yuan X C. Structured spin angular momentum in highly focused cylindrical vector vortex beams for optical manipulation[J]. Optics Express, 26, 23449-23459(2018).

    [28] Shi P, Du L P, Yuan X C. Optical manipulation with electric and magnetic transverse spin through multilayered focused configuration[J]. Applied Physics Express, 12, 032001(2019).

    [29] Yang A P, Lei X R, Shi P et al. Spin-manipulated photonic skyrmion-pair for pico-metric displacement sensing[J]. Advanced Science, 10, e2205249(2023).

    [30] Lei X R, Du L P, Yuan X C et al. Optical spin-orbit coupling in the presence of magnetization: photonic skyrmion interaction with magnetic domains[J]. Nanophotonics, 10, 3667-3675(2021).

    [31] Araneda G, Walser S, Colombe Y et al. Wavelength-scale errors in optical localization due to spin-orbit coupling of light[J]. Nature Physics, 15, 17-21(2019).

    [32] Sheng L J, Chen Y, Yuan S J et al. Photonic spin Hall effect: physics, manipulations, and applications[J]. Progress in Quantum Electronics, 91, 100484(2023).

    [33] Zhou X X, Ling X H, Luo H L et al. Identifying graphene layers via spin Hall effect of light[J]. Applied Physics Letters, 101, 251602(2012).

    [34] Neugebauer M, Woźniak P, Bag A et al. Polarization-controlled directional scattering for nanoscopic position sensing[J]. Nature Communications, 7, 11286(2016).

    [35] Chen S Z, Ling X H, Shu W X et al. Precision measurement of the optical conductivity of atomically thin crystals via the photonic spin Hall effect[J]. Physical Review Applied, 13, 014057(2020).

    [36] Zhu T F, Lou Y J, Zhou Y H et al. Generalized spatial differentiation from the spin Hall effect of light and its application in image processing of edge detection[J]. Physical Review Applied, 11, 034043(2019).

    [37] Zhou J X, Liu S K, Qian H L et al. Metasurface enabled quantum edge detection[J]. Science Advances, 6, eabc4385(2020).

    [38] Zhou J X, Qian H L, Chen C F et al. Optical edge detection based on high-efficiency dielectric metasurface[J]. Proceedings of the National Academy of Sciences of the United States of America, 116, 11137-11140(2019).

    [39] He S S, Zhou J X, Chen S Z et al. Spatial differential operation and edge detection based on the geometric spin Hall effect of light[J]. Optics Letters, 45, 877-880(2020).

    [40] Wang R S, He S S, Luo H L. Photonic spin-Hall differential microscopy[J]. Physical Review Applied, 18, 044016(2022).

    [41] Xu D Y, He S S, Zhou J X et al. Optical analog computing of two-dimensional spatial differentiation based on the Brewster effect[J]. Optics Letters, 45, 6867-6870(2020).

    [42] He S S, Zhou J X, Chen S Z et al. Wavelength-independent optical fully differential operation based on the spin-orbit interaction of light[J]. APL Photonics, 5, 036105(2020).

    [43] Xu D Y, He S S, Zhou J X et al. Goos-Hänchen effect enabled optical differential operation and image edge detection[J]. Applied Physics Letters, 116, 211103(2020).

    [44] Zhou J X, Qian H L, Zhao J X et al. Two-dimensional optical spatial differentiation and high-contrast imaging[J]. National Science Review, 8, nwaa176(2021).

    [45] Wang R S, He S S, Chen S Z et al. Computing metasurfaces enabled chiral edge image sensing[J]. iScience, 25, 104532(2022).

    [46] Xiao T T, Yang H, Yang Q et al. Realization of tunable edge-enhanced images based on computing metasurfaces[J]. Optics Letters, 47, 925-928(2022).

    [47] Liu J W, Yang Q, Chen S Z et al. Intrinsic optical spatial differentiation enabled quantum dark-field microscopy[J]. Physical Review Letters, 128, 193601(2022).

    [48] Wang Y, Yang Q, He S S et al. Computing metasurfaces enabled broad-band vectorial differential interference contrast microscopy[J]. ACS Photonics, 10, 2201-2207(2023).

    [49] Lodahl P, Mahmoodian S, Stobbe S et al. Chiral quantum optics[J]. Nature, 541, 473-480(2017).

    [50] Rodríguez-Fortuño F J, Marino G, Ginzburg P et al. Near-field interference for the unidirectional excitation of electromagnetic guided modes[J]. Science, 340, 328-330(2013).

    [51] Petersen J, Volz J, Rauschenbeutel A. Chiral nanophotonic waveguide interface based on spin-orbit interaction of light[J]. Science, 346, 67-71(2014).

    [52] O'Connor D, Ginzburg P, Rodríguez-Fortuño F J et al. Spin-orbit coupling in surface plasmon scattering by nanostructures[J]. Nature Communications, 5, 5327(2014).

    [53] Söllner I, Mahmoodian S, Hansen S L et al. Deterministic photon-emitter coupling in chiral photonic circuits[J]. Nature Nanotechnology, 10, 775-778(2015).

    [54] le Feber B, Rotenberg N, Kuipers L. Nanophotonic control of circular dipole emission[J]. Nature Communications, 6, 6695(2015).

    [55] Lefier Y, Grosjean T. Unidirectional sub-diffraction waveguiding based on optical spin-orbit coupling in subwavelength plasmonic waveguides[J]. Optics Letters, 40, 2890-2893(2015).

    [56] Peng L, Duan L F, Wang K W et al. Transverse photon spin of bulk electromagnetic waves in bianisotropic media[J]. Nature Photonics, 13, 878-882(2019).

    [57] Guo Z W, Long Y, Jiang H T et al. Anomalous unidirectional excitation of high-k hyperbolic modes using all-electric metasources[J]. Advanced Photonics, 3, 036001(2021).

    [58] Forbes A, de Oliveira M, Dennis M R. Structured light[J]. Nature Photonics, 15, 253-262(2021).

    [59] He C, Shen Y J, Forbes A. Towards higher-dimensional structured light[J]. Light: Science & Applications, 11, 205(2022).

    [60] Chen J, Wan C H, Zhan Q W. Engineering photonic angular momentum with structured light: a review[J]. Advanced Photonics, 3, 064001(2021).

    [61] Angelsky O V, Bekshaev A Y, Hanson S G et al. Structured light: ideas and concepts[J]. Frontiers in Physics, 8, 114(2020).

    [62] Shen Y J, Wang X J, Xie Z W et al. Optical vortices 30 years on: OAM manipulation from topological charge to multiple singularities[J]. Light: Science & Applications, 8, 90(2019).

    [63] Milione G, Sztul H I, Nolan D A et al. Higher-order Poincaré sphere, Stokes parameters, and the angular momentum of light[J]. Physical Review Letters, 107, 053601(2011).

    [64] Milione G, Evans S, Nolan D A et al. Higher order Pancharatnam-Berry phase and the angular momentum of light[J]. Physical Review Letters, 108, 190401(2012).

    [65] Liu Y C, Ling X H, Yi X N et al. Realization of polarization evolution on higher-order Poincaré sphere with metasurface[J]. Applied Physics Letters, 104, 191110(2014).

    [66] Chen S Z, Zhou X X, Liu Y C et al. Generation of arbitrary cylindrical vector beams on the higher order Poincaré sphere[J]. Optics Letters, 39, 5274-5276(2014).

    [67] Ren Z C, Kong L J, Li S M et al. Generalized poincaré sphere[J]. Optics Express, 23, 26586-26595(2015).

    [68] Yang H, He P, Ou K et al. Angular momentum holography via a minimalist metasurface for optical nested encryption[J]. Light: Science & Applications, 12, 79(2023).

    [69] Liu S L, Wang X H, Ni J C et al. Optical encryption in the photonic orbital angular momentum dimension via direct-laser-writing 3D chiral metahelices[J]. Nano Letters, 23, 2304-2311(2023).

    [70] Fang X Y, Ren H R, Gu M. Orbital angular momentum holography for high-security encryption[J]. Nature Photonics, 14, 102-108(2020).

    [71] Ren H R, Fang X Y, Jang J et al. Complex-amplitude metasurface-based orbital angular momentum holography in momentum space[J]. Nature Nanotechnology, 15, 948-955(2020).

    [72] Qu G Y, Yang W H, Song Q H et al. Reprogrammable meta-hologram for optical encryption[J]. Nature Communications, 11, 5484(2020).

    [73] Alfalou A, Brosseau C. Optical image compression and encryption methods[J]. Advances in Optics and Photonics, 1, 589-636(2009).

    [74] Ouyang X, Xu Y, Xian M C et al. Synthetic helical dichroism for six-dimensional optical orbital angular momentum multiplexing[J]. Nature Photonics, 15, 901-907(2021).

    [75] Lei T, Zhang M, Li Y R et al. Massive individual orbital angular momentum channels for multiplexing enabled by Dammann gratings[J]. Light: Science & Applications, 4, e257(2015).

    [76] Wang J, Yang J Y, Fazal I M et al. Terabit free-space data transmission employing orbital angular momentum multiplexing[J]. Nature Photonics, 6, 488-496(2012).

    [77] Gu M, Zhang Q M, Lamon S. Nanomaterials for optical data storage[J]. Nature Reviews Materials, 1, 16070(2016).

    [78] Bliokh K Y, Smirnova D, Nori F. Quantum spin Hall effect of light[J]. Science, 348, 1448-1451(2015).

    [79] Chen Y L, Li Y X, Xu B J et al. Pure transverse spin perpendicular to wave propagation in multiple plane waves[J]. Physical Review B, 108, L241112(2023).

    [80] Ozawa T, Price H M, Amo A et al. Topological photonics[J]. Reviews of Modern Physics, 91, 015006(2019).

    [83] Tsesses S, Cohen K, Ostrovsky E et al. Spin-orbit interaction of light in plasmonic lattices[J]. Nano Letters, 19, 4010-4016(2019).

    [84] Li C C, Shi P, Du L P et al. Mapping the near-field spin angular momenta in the structured surface plasmon polariton field[J]. Nanoscale, 12, 13674-13679(2020).

    [85] Shi P, Du L P, Li M J et al. Symmetry-protected photonic chiral spin textures by spin-orbit coupling[J]. Laser & Photonics Reviews, 15, 2000554(2021).

    [86] Dai Y N, Zhou Z K, Ghosh A et al. Ultrafast microscopy of a twisted plasmonic spin skyrmion[J]. Applied Physics Reviews, 9, 011420(2022).

    [88] Dai Y N, Zhou Z K, Ghosh A et al. Plasmonic topological quasiparticle on the nanometre and femtosecond scales[J]. Nature, 588, 616-619(2020).

    [89] Lei X R, Yang A P, Shi P et al. Photonic spin lattices: symmetry constraints for skyrmion and meron topologies[J]. Physical Review Letters, 127, 237403(2021).

    [90] Ghosh A, Yang S N, Dai Y N et al. A topological lattice of plasmonic merons[J]. Applied Physics Reviews, 8, 041413(2021).

    [91] Meng F F, Yang A P, Du K et al. Measuring the magnetic topological spin structure of light using an anapole probe[J]. Light: Science & Applications, 11, 287(2022).

    [92] Antognozzi M, Bermingham C R, Harniman R L et al. Direct measurements of the extraordinary optical momentum and transverse spin-dependent force using a nano-cantilever[J]. Nature Physics, 12, 731-735(2016).

    [93] Bauer T, Orlov S, Peschel U et al. Nanointerferometric amplitude and phase reconstruction of tightly focused vector beams[J]. Nature Photonics, 8, 23-27(2014).

    [94] Neugebauer M, Bauer T, Aiello A et al. Measuring the transverse spin density of light[J]. Physical Review Letters, 114, 063901(2015).

    [95] Neugebauer M, Eismann J S, Bauer T et al. Magnetic and electric transverse spin density of spatially confined light[J]. Physical Review X, 8, 021042(2018).

    [96] Eismann J S, Banzer P, Neugebauer M. Spin-orbit coupling affecting the evolution of transverse spin[J]. Physical Review Research, 1, 033143(2019).

    [97] Neugebauer M, Nechayev S, Vorndran M et al. Weak measurement enhanced spin Hall effect of light for particle displacement sensing[J]. Nano Letters, 19, 422-425(2019).

    [98] Eismann J S, Nicholls L H, Roth D J et al. Transverse spinning of unpolarized light[J]. Nature Photonics, 15, 156-161(2021).

    [99] Frischwasser K, Cohen K, Kher-Alden J et al. Real-time sub-wavelength imaging of surface waves with nonlinear near-field optical microscopy[J]. Nature Photonics, 15, 442-448(2021).

    [100] Lee K G, Kihm H W, Kihm J E et al. Vector field microscopic imaging of light[J]. Nature Photonics, 1, 53-56(2007).

    [101] Gersen H, Novotny L, Kuipers L et al. On the concept of imaging nanoscale vector fields[J]. Nature Photonics, 1, 242(2007).

    [102] Yang A P, Meng F F, Shi P et al. Mapping the weak plasmonic transverse field by a dielectric-nanoparticle-on-film structure with ultra-high precision[J]. Optics Express, 27, 18980-18987(2019).

    [103] Yin X J, Shi P, Du L P et al. Spin-resolved near-field scanning optical microscopy for mapping of the spin angular momentum distribution of focused beams[J]. Applied Physics Letters, 116, 241107(2020).

    [104] Yang A P, Chen J S, Chen X S et al. Three orthogonal polarization distribution mapping of the tightly focused fields with a dual-mode waveguide probe[J]. Laser & Photonics Reviews, 17, 2300032(2023).

    [105] Loudon R, Baxter C. Contributions of John Henry Poynting to the understanding of radiation pressure[J]. Proceedings of the Royal Society A, 468, 1825-1838(2012).

    [106] Pfeifer R N C, Nieminen T A, Heckenberg N R et al. Colloquium: Momentum of an electromagnetic wave in dielectric media[J]. Reviews of Modern Physics, 79, 1197-1216(2007).

    [107] Bliokh K Y, Bekshaev A Y, Nori F. Optical momentum and angular momentum in complex media: from the Abraham-Minkowski debate to unusual properties of surface plasmon-polaritons[J]. New Journal of Physics, 19, 123014(2017).

    [108] Allen L, Beijersbergen M W, Spreeuw R J et al. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes[J]. Physical Review A, 45, 8185-8189(1992).

    [109] Bliokh K Y, Alonso M A, Ostrovskaya E A et al. Angular momenta and spin-orbit interaction of nonparaxial light in free space[J]. Physical Review A, 82, 063825(2010).

    [110] Bliokh K Y, Dressel J, Nori F. Conservation of the spin and orbital angular momenta in electromagnetism[J]. New Journal of Physics, 16, 093037(2014).

    [111] Bekshaev A, Bliokh K Y, Soskin M. Internal flows and energy circulation in light beams[J]. Journal of Optics, 13, 053001(2011).

    [112] Bliokh K Y, Bekshaev A Y, Nori F. Dual electromagnetism: helicity, spin, momentum and angular momentum[J]. New Journal of Physics, 15, 033026(2013).

    [113] Lissberger P H. Ellipsometry and polarised light[J]. Nature, 269, 270(1977).

    [114] Bliokh K Y, Bekshaev A Y, Nori F. Extraordinary momentum and spin in evanescent waves[J]. Nature Communications, 5, 3300(2014).

    [115] Berry M V, Shukla P. Geometry of 3D monochromatic light: local wavevectors, phases, curl forces, and superoscillations[J]. Journal of Optics, 21, 064002(2019).

    [116] Berry M V. Optical currents[J]. Journal of Optics A, 11, 094001(2009).

    [117] Barnett S M. Optical Dirac equation[J]. New Journal of Physics, 16, 093008(2014).

    [118] Bialynicki-Birula I, Bialynicka-Birula Z. The role of the Riemann-Silberstein vector in classical and quantum theories of electromagnetism[J]. Journal of Physics A, 46, 053001(2013).

    [119] Bialynicki-Birula I. V Photon Wave Function[J]. Progress in Optics, 36, 245-294(1996).

    [120] Białynicki-Birula I. On the wave function of the photon[J]. Acta Physica Polonica A, 86, 97-116(1994).

    [121] Alpeggiani F, Bliokh K Y, Nori F et al. Electromagnetic helicity in complex media[J]. Physical Review Letters, 120, 243605(2018).

    [122] Pan D, Wei H, Gao L et al. Strong spin-orbit interaction of light in plasmonic nanostructures and nanocircuits[J]. Physical Review Letters, 117, 166803(2016).

    [123] Belinfante F J. On the current and the density of the electric charge, the energy, the linear momentum and the angular momentum of arbitrary fields[J]. Physica, 7, 449-474(1940).

    [124] Onoda M, Murakami S, Nagaosa N. Hall effect of light[J]. Physical Review Letters, 93, 083901(2004).

    [125] Bliokh K Y, Bliokh Y P. Conservation of angular momentum, transverse shift, and spin Hall effect in reflection and refraction of an electromagnetic wave packet[J]. Physical Review Letters, 96, 073903(2006).

    [126] Kavokin A, Malpuech G, Glazov M. Optical spin Hall effect[J]. Physical Review Letters, 95, 136601(2005).

    [127] Hosten O, Kwiat P. Observation of the spin Hall effect of light via weak measurements[J]. Science, 319, 787-790(2008).

    [128] Bliokh K Y, Gorodetski Y, Kleiner V et al. Coriolis effect in optics: unified geometric phase and spin-Hall effect[J]. Physical Review Letters, 101, 030404(2008).

    [129] Gorodetski Y, Niv A, Kleiner V et al. Observation of the spin-based plasmonic effect in nanoscale structures[J]. Physical Review Letters, 101, 043903(2008).

    [130] Gorodetski Y, Nechayev S, Kleiner V et al. Plasmonic Aharonov-Bohm effect: optical spin as the magnetic flux parameter[J]. Physical Review B, 82, 125433(2010).

    [131] Bardon-Brun T, Delande D, Cherroret N. Spin Hall effect of light in a random medium[J]. Physical Review Letters, 123, 043901(2019).

    [132] Fu S H, Guo C H, Liu G H et al. Spin-orbit optical Hall effect[J]. Physical Review Letters, 123, 243904(2019).

    [133] Zhu W G, Zheng H D, Zhong Y C et al. Wave-vector-varying pancharatnam-berry phase photonic spin Hall effect[J]. Physical Review Letters, 126, 083901(2021).

    [134] Ling X H, Zhou X X, Huang K et al. Recent advances in the spin Hall effect of light[J]. Reports on Progress in Physics, 80, 066401(2017).

    [135] Yin X B, Ye Z L, Rho J et al. Photonic spin Hall effect at metasurfaces[J]. Science, 339, 1405-1407(2013).

    [136] Ling X H, Guan F X, Cai X D et al. Topology-induced phase transitions in spin-orbit photonics[J]. Laser & Photonics Reviews, 15, 2000492(2021).

    [137] Marrucci L, Manzo C, Paparo D. Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media[J]. Physical Review Letters, 96, 163905(2006).

    [138] Zhao Y Q, Edgar J S, Jeffries G D M et al. Spin-to-orbital angular momentum conversion in a strongly focused optical beam[J]. Physical Review Letters, 99, 073901(2007).

    [139] Vuong L T, Adam A J L, Brok J M et al. Electromagnetic spin-orbit interactions via scattering of subwavelength apertures[J]. Physical Review Letters, 104, 083903(2010).

    [140] Bliokh K Y, Ostrovskaya E A, Alonso M A et al. Spin-to-orbital angular momentum conversion in focusing, scattering, and imaging systems[J]. Optics Express, 19, 26132-26149(2011).

    [141] Bliokh K Y, Niv A, Kleiner V et al. Geometrodynamics of spinning light[J]. Nature Photonics, 2, 748-753(2008).

    [142] Bliokh K Y. Geometrodynamics of polarized light: Berry phase and spin Hall effect in a gradient-index medium[J]. Journal of Optics A, 11, 094009(2009).

    [143] Luo H L, Wen S C, Shu W X et al. Role of transverse-momentum currents in the optical Magnus effect in free space[J]. Physical Review A, 81, 053826(2010).

    [144] Aiello A, Lindlein N, Marquardt C et al. Transverse angular momentum and geometric spin Hall effect of light[J]. Physical Review Letters, 103, 100401(2009).

    [145] Bliokh K Y, Nori F. Transverse spin of a surface polariton[J]. Physical Review A, 85, 061801(2012).

    [146] Zhang Y Q, Min C J, Dou X J et al. Plasmonic tweezers: for nanoscale optical trapping and beyond[J]. Light: Science & Applications, 10, 59(2021).

    [147] Yang Y J, Ren Y X, Chen M Z et al. Optical trapping with structured light: a review[J]. Advanced Photonics, 3, 034001(2021).

    [148] Bekshaev A Y, Bliokh K Y, Nori F. Transverse spin and momentum in two-wave interference[J]. Physical Review X, 5, 011039(2015).

    [149] Berry M V. Quantal phase factors accompanying adiabatic changes[J]. Proceedings of the Royal Society of London A, 392, 45-57(1984).

    [150] Synge E H. A suggested method for extending microscopic resolution into the ultra-microscopic region[J]. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 6, 356-362(1928).

    [151] Kwang Geol LDaiSik K[M]. Recent Optical and Photonic Technologies(2010).

    [152] Lee K G, Ahn K J, Kihm H W et al. Surface plasmon polariton detection discriminating the polarization reversal image dipole effects[J]. Optics Express, 16, 10641-10649(2008).

    [153] Veerman J A, Otter A M, Kuipers L et al. High definition aperture probes for near-field optical microscopy fabricated by focused ion beam milling[J]. Applied Physics Letters, 72, 3115-3117(1998).

    [154] Wang X, Liu Z, Zhuang M D et al. Tip-enhanced Raman spectroscopy for investigating adsorbed species on a single-crystal surface using electrochemically prepared Au tips[J]. Applied Physics Letters, 91, 101105(2007).

    [155] Burresi M, van Oosten D, Kampfrath T et al. Probing the magnetic field of light at optical frequencies[J]. Science, 326, 550-553(2009).

    [156] Mock J J, Hill R T, Degiron A et al. Distance-dependent plasmon resonant coupling between a gold nanoparticle and gold film[J]. Nano Letters, 8, 2245-2252(2008).

    [157] Han X, Jones P H. Evanescent wave optical binding forces on spherical microparticles[J]. Optics Letters, 40, 4042-4045(2015).

    [158] Li Y, Rui G H, Zhou S C et al. Enantioselective optical trapping of chiral nanoparticles using a transverse optical needle field with a transverse spin[J]. Optics Express, 28, 27808-27822(2020).

    [159] Alizadeh M H, Reinhard B M. Dominant chiral optical forces in the vicinity of optical nanofibers[J]. Optics Letters, 41, 4735-4738(2016).

    [160] Alizadeh M H, Reinhard B M. Emergence of transverse spin in optical modes of semiconductor nanowires[J]. Optics Express, 24, 8471-8479(2016).

    [161] Chen H J, Wang N, Lu W L et al. Tailoring azimuthal optical force on lossy chiral particles in Bessel beams[J]. Physical Review A, 90, 043850(2014).

    [162] Kalhor F, Thundat T, Jacob Z. Universal spin-momentum locked optical forces[J]. Applied Physics Letters, 108, 061102(2016).

    [163] Van Mechelen T, Jacob Z. Universal spin-momentum locking of evanescent waves[J]. Optica, 3, 118-126(2016).

    [164] Zhang Q, Li J Q, Liu X G. Optical lateral forces and torques induced by chiral surface-plasmon-polaritons and their potential applications in recognition and separation of chiral enantiomers[J]. Physical Chemistry Chemical Physics, 21, 1308-1314(2019).

    [165] Shi Y Z, Zhu T T, Zhang T H et al. Chirality-assisted lateral momentum transfer for bidirectional enantioselective separation[J]. Light: Science & Applications, 9, 62(2020).

    [166] Wo K J, Peng J, Prasad M K et al. Optical forces in coupled chiral particles[J]. Physical Review A, 102, 043526(2020).

    [167] Ding K, Ng J, Zhou L et al. Realization of optical pulling forces using chirality[J]. Physical Review A, 89, 063825(2014).

    [168] Chen H J, Jiang Y K, Wang N et al. Lateral optical force on paired chiral nanoparticles in linearly polarized plane waves[J]. Optics Letters, 40, 5530-5533(2015).

    [169] Li M M, Yan S H, Liang Y S et al. Transverse spinning of particles in highly focused vector vortex beams[J]. Physical Review A, 95, 053802(2017).

    [170] Li M M, Yan S H, Yao B L et al. Spinning and orbiting motion of particles in vortex beams with circular or radial polarizations[J]. Optics Express, 24, 20604-20612(2016).

    [171] Magallanes H, Brasselet E. Macroscopic direct observation of optical spin-dependent lateral forces and left-handed torques[J]. Nature Photonics, 12, 461-464(2018).

    [172] Tanaka Y Y, Albella P, Rahmani M et al. Plasmonic linear nanomotor using lateral optical forces[J]. Science Advances, 6, eabc3726(2020).

    [173] Andrén D, Baranov D G, Jones S et al. Microscopic metavehicles powered and steered by embedded optical metasurfaces[J]. Nature Nanotechnology, 16, 970-974(2021).

    [174] Wu X F, Ehehalt R, Razinskas G et al. Light-driven microdrones[J]. Nature Nanotechnology, 17, 477-484(2022).

    Tools

    Get Citation

    Copy Citation Text

    Xinxin Gou, Songze Li, Peng Shi, Xiaocong Yuan. Regulation Mechanisms and Recent Progress of Optical Spin Angular Momentum (Invited)[J]. Acta Optica Sinica, 2024, 44(10): 1026002

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Physical Optics

    Received: Dec. 26, 2023

    Accepted: Mar. 18, 2024

    Published Online: Apr. 26, 2024

    The Author Email: Xiaocong Yuan (xcyuan@szu.edu.cn)

    DOI:10.3788/AOS231986

    CSTR:32393.14.AOS231986

    Topics