Laser & Infrared, Volume. 54, Issue 2, 312(2024)

Recognition of shallow buried state of submarine cable based on fiber optic temperature hybrid domain features

JIANG Kun1, ZHANG Shuai1, FU Xiang1, SHI Er-zhen1, AN Bo-wen2, CHEN Yuan-lin2, and CUI Gui-yan2、*
Author Affiliations
  • 1National Energy Group Dongtai Offshore Wind Power Co., Ltd., Dongtai 224200, China
  • 2Shanghai Anxin Information Technology Co., Ltd., Shanghai 201306, China
  • show less
    References(11)

    [6] [6] Sherstinsky A. Fundamentals of recurrent neural network (RNN) and long short-term memory (LSTM) network[J]. Physica D: Nonlinear Phenomena, 2020, 404: 132306.

    [7] [7] Yeh C W, Chen R. Using convolutional neural network for vibration fault diagnosis monitoring in machinery[C]//2018 IEEE International Conference on Advanced Manufacturing (ICAM). IEEE, 2018: 246-249.

    [8] [8] Yu Y, Si X, Hu C, et al. A review of recurrent neural networks: LSTM cells and network architectures[J]. Neural Computation, 2019, 31(7): 1235-1270.

    [9] [9] Huang N E, Shen Z, Long S R, et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[J]. Proceedings of the Royal Society A Mathematical Physical & Engineering Sciences, 1998, 454(1971): 903-995.

    [10] [10] Wu Zhaohua, Huang NordenE. Ensemble empirical mode decomposition: a noise-assisted data analysis method[J]. Advances in Adaptive Data Analysis, 2009, 1(1): 1-41.

    [11] [11] Torres M E, Colominas M A, Schlotthauer G, et al. A complete ensemble empirical mode decomposition with adaptive noise[C]//IEEE International Conference on Acoustics, Speech and Signal Processing, IEEE, 2011: 4144-4147.

    [12] [12] Dragomiretskiy K, Zosso D. Variational mode decomposition[J]. IEEE Transactions on Signal Processing, 2014, 62(3): 531-544.

    [13] [13] Li H, Liu T, Wu X, et al. An optimized VMD method and its applications in bearing fault diagnosis[J]. Measurement, 2020, 166: 108185.

    [14] [14] Wang Tianyang, Han Qinkai, Chu Fulei, et al. Vibration based condition monitoring and fault diagnosis of wind turbine planetary gearbox: a review[J]. Mechanical Systems and Signal Processing, 2019, 126(1): 662-685.

    [17] [17] Yang B S, Han T, An J L. ART-KOHONEN neural network for fault diagnosis of rotating machinery[J]. Mechanical Systems and Signal Processing, 2004, 18(3): 645-657.

    [18] [18] Se Haifeng, Zhou Lei, Xu Shiming, et al. Selecting sensitive features using CDET for bearing fault diagnosis[J]. Journal of Physics: Conference Series, 2022, 2218(1): 012063.

    Tools

    Get Citation

    Copy Citation Text

    JIANG Kun, ZHANG Shuai, FU Xiang, SHI Er-zhen, AN Bo-wen, CHEN Yuan-lin, CUI Gui-yan. Recognition of shallow buried state of submarine cable based on fiber optic temperature hybrid domain features[J]. Laser & Infrared, 2024, 54(2): 312

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Jul. 30, 2023

    Accepted: Jun. 4, 2025

    Published Online: Jun. 4, 2025

    The Author Email: CUI Gui-yan (1363216917@qq.com)

    DOI:10.3969/j.issn.1001-5078.2024.02.023

    Topics