Chinese Journal of Liquid Crystals and Displays, Volume. 38, Issue 3, 368(2023)

Hyperspectral image classification based on multi-scale hybrid convolutional network

Yun YANG*, Yao ZHOU, and Jia-ning CHEN
Author Affiliations
  • School of Electronic Information and Artificial Intelligence,Shaanxi University of Science & Technology,Xi'an 710021,China
  • show less
    Figures & Tables(19)
    Structure of overall network
    Structure of multi-scale 3D-CNN module
    Spectral-spatial hybrid domain attention mechanism module
    Spectral attention mechanism
    Spatial attention mechanism
    IP hyperspectral images
    PaviaU hyperspectral images
    Training process of IP dataset
    Training process of PaviaU dataset
    Visualization of IP dataset
    Visualization of PaviaU dataset
    • Table 1. Sample distribution of IP dataset

      View table
      View in Article

      Table 1. Sample distribution of IP dataset

      类别类名中文类名对应颜色样本数
      1Alfalfa苜蓿46
      2Corn-notill免耕玉米1 428
      3Corn-mintill少耕玉米830
      4Corn玉米237
      5Grass-pasture牧草483
      6Grass-trees草地-树木730
      7Grass-pasture-mowed收割过的草-牧场28
      8Hay-windrowed干草料堆478
      9Oats燕麦20
      10Soybean-notill免耕大豆972
      11Soybean-mintill少耕大豆2 455
      12Soybean-clean修剪后的大豆593
      13Wheat小麦205
      14Woods树木1 265
      15Buildings-Grass-Trees-Drivers建筑物-草-树-车道386
      16Stone-Steel-Towers石头-钢材-塔楼93
      Total10 249
    • Table 2. Sample distribution of PaviaU dataset

      View table
      View in Article

      Table 2. Sample distribution of PaviaU dataset

      类别类名中文类名对应颜色样本数
      1Asphalt柏油马路6 631
      2Meadows草地18 649
      3Gravel砂砾2 099
      4Trees树木3 064
      5Painted metal sheets金属板1 345
      6Bare Soil裸露土壤5 029
      7Bitumen沥青屋顶1 330
      8Self-Blocking Bricks砖路3 682
      9Shadows阴影947
      Total42 776
    • Table 3. Influence of B value on classification accuracy of IP dataset

      View table
      View in Article

      Table 3. Influence of B value on classification accuracy of IP dataset

      BOABOA
      100.984 4250.987 9
      150.982 7300.986 1
      200.985 5350.982 4
    • Table 4. Influence of B value on classification accuracy of PaviaU dataset

      View table
      View in Article

      Table 4. Influence of B value on classification accuracy of PaviaU dataset

      BOABOA
      100.993 6250.999 0
      150.997 3300.997 8
      200.996 5350.995 7
    • Table 5. Influence of S on classification accuracy of IP dataset

      View table
      View in Article

      Table 5. Influence of S on classification accuracy of IP dataset

      BOABOA
      100.983 7250.981 4
      150.982 8300.987 9
      200.984 0350.985 8
    • Table 6. Influence of S on classification accuracy of PaviaU dataset

      View table
      View in Article

      Table 6. Influence of S on classification accuracy of PaviaU dataset

      BOABOA
      100.995 7250.997 9
      150.999 0300.995 8
      200.995 1350.997 4
    • Table 7. Classification results of different algorithms in IP dataset

      View table
      View in Article

      Table 7. Classification results of different algorithms in IP dataset

      类别SVM3D-CNNHybridSNMS-3DMS-Hybrid-A
      10.595 20.634 10.926 81.000 00.951 2
      20.766 70.794 60.737 70.933 10.971 2
      30.637 20.714 90.990 60.990 60.988 0
      40.621 50.521 10.859 21.000 01.000 0
      50.917 20.887 40.979 30.979 30.990 8
      60.958 90.969 60.993 90.977 20.987 8
      70.653 80.840 00.520 01.000 01.000 0
      80.972 20.990 70.990 71.000 01.000 0
      90.444 40.611 10.666 70.944 41.000 0
      100.682 30.795 40.971 40.971 40.993 1
      110.857 50.855 20.931 20.991 90.991 4
      120.702 20.706 00.971 90.975 70.973 8
      130.983 80.945 90.897 30.973 01.000 0
      140.956 10.963 11.000 00.995 60.998 2
      150.497 10.772 30.968 30.976 90.994 2
      160.881 00.940 50.881 00.916 70.892 8
      OA0.810 10.840 70.930 20.978 40.987 9
      AA0.758 00.808 90.892 90.976 60.983 3
      Kappa0.782 50.817 80.920 60.975 40.986 2
    • Table 8. Classification results of different algorithms in PaviaU dataset

      View table
      View in Article

      Table 8. Classification results of different algorithms in PaviaU dataset

      类别SVM3D-CNNHybridSNMS-3DMS-Hybrid-A
      10.936 00.988 10.989 90.996 61.000 0
      20.984 60.994 50.999 80.998 21.000 0
      30.794 10.896 20.944 40.985 70.987 8
      40.946 70.977 20.986 90.993 80.998 5
      50.990 10.990 90.995 01.000 01.0000
      60.863 70.988 50.999 81.000 01.000 0
      70.847 10.960 70.999 21.000 01.000 0
      80.906 50.896 50.955 30.979 50.999 7
      91.000 00.929 60.931 90.993 00.985 9
      OA0.940 30.975 70.989 10.995 60.999 0
      AA0.918 80.958 00.978 00.994 10.996 9
      Kappa0.920 50.967 80.985 60.994 20.998 6
    Tools

    Get Citation

    Copy Citation Text

    Yun YANG, Yao ZHOU, Jia-ning CHEN. Hyperspectral image classification based on multi-scale hybrid convolutional network[J]. Chinese Journal of Liquid Crystals and Displays, 2023, 38(3): 368

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Research Articles

    Received: Jul. 1, 2022

    Accepted: --

    Published Online: Apr. 3, 2023

    The Author Email: Yun YANG (yangyun0806@163.com)

    DOI:10.37188/CJLCD.2022-0225

    Topics