Infrared and Laser Engineering, Volume. 44, Issue 6, 1773(2015)
Discussion on feasibility of inserting the GSP into LCOS
[1] [1] Smalley D E, Smithwick Q Y J, Bove V M, et al. Anisotropic leaky-mode modulator for holographic video displays[J]. Nature, 2013, 498(7454): 313-317.
[2] [2] Stahl R, Rochus V, Rottenberg X, et al. Modular sub-wavelength diffractive light modulator for high-definition holographic displays[C]//Journal of Physics: Conference Series. IOP Publishing, 2013, 415(1): 012057.
[3] [3] Michalkiewicz A, Kujawinska M, Kozacki T, et al. Holographic three-dimensional displays with liquid crystal on silicon spatial light modulator[C]//Optical Science and Technology, the SPIE 49th Annual Meeting. International Society for Optics and Photonics, 2004: 85-94.
[4] [4] Pors A, Bozhevolnyi S I. Plasmonic metasurfaces for efficient phase control in reflection[J]. Optics Express, 2013, 21(22): 27438-27451.
[5] [5] Lal S, Link S, Halas N J. Nano-optics from sensing to waveguiding[J]. Nature Photonics, 2007, 1(11): 641-648.
[6] [6] Knight M W, Liu L, Wang Y, et al. Aluminum plasmonic nanoantennas[J]. Nano Letters, 2012, 12(11): 6000-6004.
[7] [7] Caldwell M E, Yeatman E M. Surface-plasmon spatial light modulators based on liquid crystal[J]. Applied Optics, 1992, 31(20): 3880-3891.
[8] [8] Schulz L G, Tangherlini F R. Optical constants of silver, gold, copper, and aluminum. II. The index of refraction n[J]. JOSA, 1954, 44(5): 362-367.
[9] [9] Chan G H, Zhao J, Schatz G C, et al. Localized surface plasmon resonance spectroscopy of triangular aluminum nanoparticles[J]. The Journal of Physical Chemistry C, 2008, 112(36): 13958-13963.
[10] [10] Farhad Shokraneh. Scattering Properties of Nanoantennas[M]. Sweden: Department of Electrical and Information Technology Lund University, 2012.
[11] [11] Biagioni P, Huang J S, Hecht B. Nanoantennas for visible and infrared radiation[J]. Reports on Progress in Physics, 2012, 75(2): 024402.
[12] [12] Bozhevolnyi S I. Plasmonic Nanoguides and Circuits[M]. Denmark: Optical Society of America, 2008.
[13] [13] Chan G H, Zhao J, Schatz G C, et al. Localized surface plasmon resonance spectroscopy of triangular aluminum nanoparticles[J]. The Journal of Physical Chemistry C, 2008, 112(36): 13958-13963.
[14] [14] Gjonaj B. Digital plasmonics: from concept to microscopy[D]. Netherlands: FOM Institute for Atomic and Molecular Physics Science Park, 2012.
[15] [15] Encina E R, Coronado E A. Plasmonic nanoantennas: angular scattering properties of multipole resonances in noble metal nanorods[J]. The Journal of Physical Chemistry C, 2008, 112(26): 9586-9594.
[16] [16] Zhu Jun , Li Zhiquan, Qin Liuli. Cavity physical properties of SPP propagation in the MIM structure[J]. Infrared and Laser Engineering, 2015, 44(3):852-856. (in Chinese)
[17] [17] Barnard E S. Plasmonic optical antennas for enhanced light detection and emission[D]. America: Stanford University, 2011.
[18] [18] SΦndergaard T, Bozhevolnyi S I. Strip and gap plasmon polariton optical resonators[J]. Physica Status Solidi (b), 2008, 245(1): 9-19.
[19] [19] Yang J, Sauvan C, Jouanin A, et al. Ultrasmall metal-insulator-metal nanoresonators: impact of slow-wave effects on the quality factor[J]. Optics Express, 2012, 20(15): 16880-16891.
[20] [20] Liaw J W, Huang C H, Chen B R, et al. Subwavelength Fabry-Perot resonator: a pair of quantum dots incorporated with gold nanorod[J]. Nanoscale Research Letters, 2012, 7(1): 1-7.
Get Citation
Copy Citation Text
Ni Lei, Shen Chuan, Li Hao, Liu Kaifeng, Wei Sui. Discussion on feasibility of inserting the GSP into LCOS[J]. Infrared and Laser Engineering, 2015, 44(6): 1773
Category: 激光与光电子技术应用
Received: Oct. 12, 2014
Accepted: Nov. 15, 2014
Published Online: Jan. 26, 2016
The Author Email:
CSTR:32186.14.