Laser & Optoelectronics Progress, Volume. 58, Issue 5, 0500007(2021)
Atmospheric Pressure and Large Volume Non-Equilibrium Plasma Discharge Technology
[1] Yu J L, He L M, Ding W et al. Design of plasma igniter and research on discharge characteristics. Journal of Nanjing University of Aeronautics & Astronautics, 48, 396-401(2016).
[2] Huang C, Huang K, Yi A P et al. 200 W mid-infrared HF chemical laser with repetition rate. Chinese Journal of Lasers, 46, 0801005(2019).
[3] Pekárek S, Mikeš J, Krýsa J. Comparative study of TiO2 and ZnO photocatalysts for the enhancement of ozone generation by surface dielectric barrier discharge in air. Applied Catalysis A: General, 502, 122-128(2015).
[4] Du Y J, Nayak G, Oinuma G et al. Effect of water vapor on plasma morphology, OH and H2O2 production in He and Ar atmospheric pressure dielectric barrier discharges. Journal of Physics D: Applied Physics, 50, 145201(2017).
[5] Pardeshi H, Patil P P, Bange J. Development of atmospheric pressure glow discharge plasma assisted CVD system for the deposition of SiOx coatings. Journal of Instrumentation, 14, P06026(2019).
[6] Zeniou A, Puač N, Škoro N et al. Electrical and optical characterization of an atmospheric pressure, uniform, large-area processing, dielectric barrier discharge. Journal of Physics D: Applied Physics, 50, 135204(2017).
[7] Stark R H, Schoenbach K H. Direct current high-pressure glow discharges. Journal of Applied Physics, 85, 2075-2080(1999).
[8] Zhou Z Y, Li H, Cui Y L et al. Optically pumped 4 μm CW HBr gas laser based on hollow-core fiber. Acta Optica Sinica, 40, 1614001(2020).
[9] Feng S J, Dong L Q, Ma D N et al. Terahertz waves generated through plasma under linear electrodes. Acta Optica Sinica, 40, 1030001(2020).
[10] Morrow R, Lowke J J. Streamer propagation in air. Journal of Physics D: Applied Physics, 30, 614-627(1997).
[11] Akishev Y S, Deryugin A A, Kochetov I V et al. DC glow discharge in air flow at atmospheric pressure in connection with waste gases treatment. Journal of Physics D: Applied Physics, 26, 1630-1637(1999).
[12] Akishev Y, Grushin M, Kochetov I et al. Negative corona, glow and spark discharges in ambient air and transitions between them. Plasma Sources Science and Technology, 14, S18-S25(2005).
[13] Vertriest R, Morent R, Dewulf J et al. Multi-pin-to-plate atmospheric glow discharge for the removal of volatile organic compounds in waste air. Plasma Sources Science and Technology, 12, 412-416(2003).
[14] Vandenbroucke A M, Mora M, Jiménez-Sanchidrián C et al. TCE abatement with a plasma-catalytic combined system using MnO2 as catalyst. Applied Catalysis B: Environmental, 156/157, 94-100(2014).
[15] Förster S, Mohr C, Viöl W. Investigations of an atmospheric pressure plasma jet by optical emission spectroscopy. Surface and Coatings Technology, 200, 827-830(2005).
[16] Kunhardt E E. Generation of large-volume, atmospheric-pressure, nonequilibrium plasmas. IEEE Transactions on Plasma Science, 28, 189-200(2000).
[17] Park S H, Cho T S, Becker K H et al. Capillary plasma electrode discharge as an intense and efficient source of vacuum ultraviolet radiation for plasma display. IEEE Transactions on Plasma Science, 37, 1611-1614(2009).
[18] Christiansen J, Schultheiss C. Production of high current particle beams by low pressure spark discharges. Zeitschrift Für Physik A Atoms and Nuclei, 290, 35-41(1979).
[19] Nakamura K, Yukawa N, Mochizuki T et al. Optimization of the discharge characteristics of a laser device employing a plasma electrode. Applied Physics Letters, 49, 1493-1495(1986).
[20] Yin H, Cross A W, He W et al. Pseudospark experiments: cherenkov interaction and electron beam post-acceleration. IEEE Transactions on Plasma Science, 32, 233-239(2004).
[21] Kumar N, Pareek N, Pal U N et al. Performance evaluation of self-breakdown-based single-gap plasma cathode electron gun. Pramana, 82, 1075-1084(2014).
[22] Lamba R P, Pathania V, Meena B L et al. Investigations of a high current linear aperture radial multichannel pseudospark switch. The Review of Scientific Instruments, 86, 103508(2015).
[23] Kumar N, Lamba R P, Hossain A M et al. A tapered multi-gap multi-aperture pseudospark-sourced electron gun based X-band slow wave oscillator. Applied Physics Letters, 111, 213502(2017).
[24] Sugawara M, Murata K, Ohshima T et al. A hollow-cathode discharge as a cold uniform plasma source. Journal of Physics D: Applied Physics, 14, L137-L140(1981).
[25] Zhang J, Zhao J P, Zhang Q G. The breakdown characteristics of multigap pseudospark under nanosecond pulsed voltages. IEEE Transactions on Plasma Science, 42, 3886-3890(2014).
[26] Cross A W, Yin H, He W et al. Generation and application of pseudospark-sourced electron beams. Journal of Physics D: Applied Physics, 40, 1953(2007).
[27] Jiang C Q, Kuthi A, Gundersen M A et al. Pseudospark electron beam as an excitation source for extreme ultraviolet generation. Applied Physics Letters, 87, 131501(2005).
[28] Taylan O, Berberoglu H. Dissociation of carbon dioxide using a microhollow cathode discharge plasma reactor: effects of applied voltage, flow rate and concentration. Plasma Sources Science and Technology, 24, 015006(2015).
[29] Schoenbach K H, Verhappen R, Tessnow T et al. Micro hollow cathode discharges. Applied Physics Letters, 68, 13-15(1996).
[30] Sankaran R M, Giapis K P. High-pressure micro-discharges in etching and deposition applications. Journal of Physics D: Applied Physics, 36, 2914-2921(2003).
[31] Chen J, Park S J, Fan Z F et al. Development and characterization of micromachined hollow cathode plasma display devices. Journal of Microelectromechanical Systems, 11, 536-543(2002).
[32] Park S J, Chen J, Wagner C J et al. Microdischarge arrays: a new family of photonic devices. IEEE Journal of Selected Topics in Quantum Electronics, 8, 139-147(2002).
[33] Allmen P V, Sadler D J, Jensen C et al. Linear, segmented microdischarge array with an active length of∼1 cm: CW and pulsed operation in the rare gases and evidence of gain on the 460.30 nm transition of Xe+. Applied Physics Letters, 82, 4447-4449(2003).
[34] Allmen P V, McCain S T, Ostrom N P et al. Ceramic microdischarge arrays with individually ballasted pixels. Applied Physics Letters, 82, 2562-2564(2003).
[35] Sankaran R M, Giapis K P. Hollow cathode sustained plasma microjets: characterization and application to diamond deposition. Journal of Applied Physics, 92, 2406-2411(2002).
[36] El-Habachi A, Schoenbach K H. Emission of excimer radiation from direct current, high-pressure hollow cathode discharges. Applied Physics Letters, 72, 22-24(1998).
[37] El-Habachi A, Schoenbach K H. Generation of intense excimer radiation from high-pressure hollow cathode discharges. Applied Physics Letters, 73, 885-887(1998).
[38] Moselhy M, Shi W, Stark R H et al. Xenon excimer emission from pulsed microhollow cathode discharges. Applied Physics Letters, 79, 1240-1242(2001).
[39] Kurunczi P, Lopez J, Shah H et al. Excimer formation in high-pressure microhollow cathode discharge plasmas in helium initiated by low-energy electron collisions. International Journal of Mass Spectrometry, 205, 277-283(2001).
[40] Park H I, Lee T I, Park K W et al. Formation of large-volume, high-pressure plasmas in microhollow cathode discharges. Applied Physics Letters, 82, 3191-3193(2003).
[41] Wang X P, Huang Q L, Ding S G et al. Micro hollow cathode excited dielectric barrier discharge (DBD) plasma bubble and the application in organic wastewater treatment. Separation and Purification Technology, 240, 116659(2020).
[42] Watanabe J, Ogino A, Nagatsu M. Characteristics of direct current microhollow cathode discharges combined with dielectric barrier discharges as preionizer. Applied Physics Letters, 91, 221507(2007).
[43] Homola T, Krumpolec R, Zemánek M et al. An array of micro-hollow surface dielectric barrier discharges for large-area atmospheric-pressure surface treatments. Plasma Chemistry and Plasma Processing, 37, 1149-1163(2017).
[44] Tachibana K, Nakamura T, Motomura H. Monolithic structure of integrated coaxial microhollow dielectric barrier discharges: characterization for environmental and biomedical applications. Japanese Journal of Applied Physics, 55, 07LB01(2016).
[45] Heming R, Michels A, Olenici S B et al. Electrical generators driving microhollow and dielectric barrier discharges applied for analytical chemistry. Analytical and Bioanalytical Chemistry, 395, 611-618(2009).
[46] Taylan O, Berberoglu H. Dissociation of carbon dioxide using a microhollow cathode discharge plasma reactor: effects of applied voltage, flow rate and concentration. Plasma Sources Science and Technology, 24, 015006(2015).
Get Citation
Copy Citation Text
Minshuang Huang, Youwen Xu, Miao Cheng. Atmospheric Pressure and Large Volume Non-Equilibrium Plasma Discharge Technology[J]. Laser & Optoelectronics Progress, 2021, 58(5): 0500007
Category: Reviews
Received: Jul. 6, 2020
Accepted: Aug. 3, 2020
Published Online: Apr. 19, 2021
The Author Email: Minshuang Huang (huangminshuang@bipt.edu.cn)