Laser & Optoelectronics Progress, Volume. 55, Issue 11, 111008(2018)

Face Recognition Based on Multi-Directional Weber Gradient Histograms

Huixian Yang, Chang Xu*, Jinfang Zeng, and Xia Tao
Author Affiliations
  • School of Physics and Optoelectronics, Xiangtan University, Xiangtan, Hunan 411105, China
  • show less
    Figures & Tables(13)
    3×3 neighborhood map
    Counting process. (a) Original coding; (b) noise coding 1; (c) noise coding 2
    Flow chart of MWGH algorithm
    YALE face database
    AR face database. (a) Training sample; (b) illumination subset; (c) facial expression subset; (d) partial occlusion subset A; (e) partial occlusion subset B
    ORL face database
    Recognition rates for different face databases in different block modes. (a) YALE face database; (b) AR face database with partial occlusion subset B; (c) ORL face database
    Recognition rates for different face databases in different block modes
    • Table 1. Recognition rates for YALE face database%

      View table

      Table 1. Recognition rates for YALE face database%

      AlgorithmSample number
      12345
      HOG94.0094.6784.6793.3395.33
      WLD93.3389.3388.0096.6795.33
      WLBP94.6796.0093.3398.0098.33
      HWOG95.0097.0095.6799.0098.67
      IGLBP96.6798.0093.3399.3398.67
      DWLD94.3395.3392.0098.0096.00
      MWGH98.0099.3397.3399.3399.33
    • Table 2. Recognition rates for AR face database%

      View table

      Table 2. Recognition rates for AR face database%

      AlgorithmIlluminationsubsetExpressionsubsetPartial occlusionsubset APartial occlusionsubset B
      HOG91.3390.3369.0049.00
      WLD91.6792.0090.6778.67
      WLBP94.0095.3391.6780.00
      HWOG95.3395.0094.0085.67
      IGLBP99.6799.0098.6794.33
      DWLD93.0094.6792.0083.67
      MWGH99.33100.0099.3394.67
    • Table 3. Recognition rates for ORL face database%

      View table

      Table 3. Recognition rates for ORL face database%

      AlgorithmSample number
      2345
      HOG87.9492.3694.1796.00
      WLD87.1492.1495.2396.80
      WLBP90.2093.8296.2697.12
      HWOG91.3895.7498.1598.61
      IGLBP90.8194.4696.5097.95
      DWLD89.3594.2696.6697.20
      MWGH93.9097.2198.8099.26
    • Table 4. Results from noise-added experiment for AR light database%

      View table

      Table 4. Results from noise-added experiment for AR light database%

      MethodNormalized variance of Gaussian white noiseψ
      00.00010.00020.00030.0004
      HOG91.3364.7349.2040.2033.7363.07
      WLD91.6781.6754.2737.1325.4772.22
      WLBP94.0085.2560.3347.8039.3858.11
      HWOG95.3388.7565.4351.2846.5551.17
      IGLBP99.6793.3390.6785.3380.0019.74
      DWLD93.3391.8786.6775.9364.2031.21
      MWGH99.3397.0792.6780.4069.8728.94
    • Table 5. Feature dimension and time-consuming of different algorithms on YALE face database

      View table

      Table 5. Feature dimension and time-consuming of different algorithms on YALE face database

      MethodFeaturedimensionT1 /msT2 /ms
      HOG8102.83.3
      WLD1200014.34.7
      WLBP1180010.54.7
      HWOG13228.33.4
      IGLBP1638433.44.9
      DWLD1200014.54.7
      MWGH1308017.24.8
    Tools

    Get Citation

    Copy Citation Text

    Huixian Yang, Chang Xu, Jinfang Zeng, Xia Tao. Face Recognition Based on Multi-Directional Weber Gradient Histograms[J]. Laser & Optoelectronics Progress, 2018, 55(11): 111008

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Image Processing

    Received: Apr. 16, 2018

    Accepted: Jun. 5, 2018

    Published Online: Aug. 14, 2019

    The Author Email: Chang Xu (875080392@qq.com)

    DOI:10.3788/LOP55.111008

    Topics