Chinese Optics Letters, Volume. 20, Issue 4, 041401(2022)
Highly integrated photonic crystal bandedge lasers monolithically grown on Si substrates On the Cover
[1] D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J.-M. Fédéli, J.-M. Hartmann, J. H. Schmid, D.-X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich, M. Nedeljkovic. Roadmap on silicon photonics. J. Opt., 18, 073003(2016).
[2] M. Asghari, A. V. Krishnamoorthy. Energy-efficient communication. Nat. Photonics, 5, 268(2011).
[3] S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, H. Liu. Electrically pumped continuous-wave III-V quantum dot lasers on silicon. Nat. Photonics, 10, 307(2016).
[4] R. Alcotte, M. Martin, J. Moeyaert, R. Cipro, S. David, F. Bassani, F. Ducroquet, Y. Bogumilowicz, E. Sanchez, Z. Ye, X. Y. Bao, J. B. Pin, T. Baron. Epitaxial growth of antiphase boundary free GaAs layer on 300 mm Si (001) substrate by metalorganic chemical vapour deposition with high mobility. APL Mater., 4, 046101(2016).
[5] M. Tang, S. Chen, J. Wu, Q. Jiang, K. Kennedy, P. Jurczak, M. Liao, R. Beanland, A. Seeds, H. Liu. Optimizations of defect filter layers for 1.3-µm InAs/GaAs quantum-dot lasers monolithically grown on Si substrates. IEEE J. Sel. Top. Quantum Electron., 22, 50(2016).
[6] H. Liu, T. Wang, Q. Jiang, R. Hogg, F. Tutu, F. Pozzi, A. Seeds. Long-wavelength InAs/GaAs quantum-dot laser diode monolithically grown on Ge substrate. Nat. Photonics, 5, 416(2011).
[7] A. Lee, Q. Jiang, M. Tang, A. Seeds, H. Liu. Continuous-wave InAs/GaAs quantum-dot laser diodes monolithically grown on Si substrate with low threshold current densities. Opt. Express, 20, 22181(2012).
[8] D. Jung, J. Norman, M. Kennedy, C. Shang, B. Shin, Y. Wan, A. C. Gossard, J. E. Bowers. High efficiency low threshold current 1.3 µm InAs quantum dot lasers on on-axis (001) GaP/Si. Appl. Phys. Lett., 111, 122107(2017).
[9] Y. Wan, Q. Li, A. Y. Liu, A. C. Gossard, J. E. Bowers, E. L. Hu, K. M. Lau. Optically pumped 1.3 µm room-temperature InAs quantum-dot micro-disk lasers directly grown on (001) silicon. Opt. Lett., 41, 1664(2016).
[10] T. Zhou, M. Tang, G. Xiang, B. Xiang, S. Hark, M. Martin, M.-L. Touraton, T. Baron, Y. Lu, S. Chen, H. Liu, Z. Zhang. Ultra-low threshold InAs/GaAs quantum dot microdisk lasers on planar on-axis Si (001) substrates. Optica, 11, 430(2020).
[11] T. Zhou, M. Tang, G. Xiang, X. Fang, X. Liu, B. Xiang, S. Hark, M. Martin, T. Baron, S. Pan, J.-S. Park, Z. Liu, S. Chen, Z. Zhang, H. Liu. Continuous-wave quantum dot photonic crystal lasers grown on on-axis Si (001). Nat. Commun., 11, 977(2020).
[12] T. Zhou, M. Tang, H. Li, Z. Zhang, Y. Cui, J.-S. Park, M. Martin, T. Baron, S. Chen, H. Liu, Z. Zhang. Single-mode photonic crystal nanobeam lasers monolithically grown on Si for dense integration. IEEE J. Sel. Top. Quantum Electron., 28, 1501906(2021).
[13] H.-Y. Ryu, S.-H. Kwon, Y.-J. Lee, Y.-H. Lee, J.-S. Kim. Very-low-threshold photonic band-edge lasers from free-standing triangular photonic crystal slabs. Appl. Phys. Lett., 80, 3476(2002).
[14] S.-H. Kwon, H.-Y. Ryu, G.-H. Kim, Y.-H. Lee, S.-B. Kim. Photonic bandedge lasers in two-dimensional square-lattice photonic crystal slabs. Appl. Phys. Lett., 83, 3870(2003).
[15] H.-Y. Lu, S.-C. Tian, C.-Z. Tong, L.-J. Wang, J.-M. Rong, C.-Y. Liu, H. Wang, S.-L. Shu, L.-J. Wang. Extracting more light for vertical emission: high power continuous wave operation of 1.3-µm quantum-dot photonic-crystal surface-emitting laser based on a flat band. Light Sci. Appl., 8, 108(2019).
[16] S. Noda, K. Kitamura, T. Okino, D. Yasuda, Y. Tanaka. Photonic-crystal surface-emitting lasers: review and introduction of modulated-photonic crystals. IEEE J. Sel. Top. Quantum Electron., 23, 4900107(2017).
[17] H. Y. Liu, I. R. Sellers, T. J. Badcock, D. J. Mowbray, M. S. Skolnick, K. M. Groom, M. Gutierrez, M. Hopkinson, J. S. Ng, J. P. R. David, R. Beanland. Improved performance of 1.3 µm multilayer InAs quantum-dot lasers using a high-growth-temperature GaAs spacer layer. Appl. Phys. Lett., 85, 704(2004).
[18] S. G. Johnson, J. D. Joannopoulos. Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis. Opt. Express, 8, 173(2001).
Get Citation
Copy Citation Text
Yaoran Huang, Taojie Zhou, Mingchu Tang, Guohong Xiang, Haochuan Li, Mickael Martin, Thierry Baron, Siming Chen, Huiyun Liu, Zhaoyu Zhang, "Highly integrated photonic crystal bandedge lasers monolithically grown on Si substrates," Chin. Opt. Lett. 20, 041401 (2022)
Category: Lasers, Optical Amplifiers, and Laser Optics
Received: Nov. 16, 2021
Accepted: Jan. 14, 2022
Posted: Jan. 14, 2022
Published Online: Feb. 21, 2022
The Author Email: Zhaoyu Zhang (zhangzy@cuhk.edu.cn)