Opto-Electronic Engineering, Volume. 52, Issue 3, 240279(2025)

Colorectal polyp segmentation via Transformer-based adaptive feature selection

Liming Liang, Ting Kang*, Chengbin Wang, Kangquan Chen, and Yulin Li
Author Affiliations
  • College of Electrical Engineering and Automation, Jiangxi University of Science and Technology, Ganzhou, Jiangxi 341000, China
  • show less
    Figures & Tables(13)
    A Transformer-based adaptive feature selection algorithm for colorectal polyp segmentation
    Dual-focus attention module
    Hierarchical feature fusion module
    Dynamic feature selection module
    Trend chart of Dice coefficient changes
    Visualization of segmentation results of different networks on CVC-ClinicDB and Kvasir datasets
    Visualization of sgmentation results of different networks on CVC-ColonDB and ETIS datasets
    • Table 1. Dataset details and division

      View table
      View in Article

      Table 1. Dataset details and division

      DatasetImage resolutionTrain dataTest dataImage type
      CVC-ClinicDB384×28855062Image
      Kvasir-SEGSize variation900100Image and mask
      CVC-ColonDB574×5000380Image
      ETIS1226×9960196Image
    • Table 2. Segmentation results of different networks on Kvasir and CVC-ClinicDB datasets

      View table
      View in Article

      Table 2. Segmentation results of different networks on Kvasir and CVC-ClinicDB datasets

      DatasetMethodDiceMIoUSEPCF2MAE
      KvasirU-Net[4]0.8180.7460.8560.8570.8270.055
      DCRNet[6]0.8880.8250.9020.9040.8910.035
      CaraNet[7]0.9220.8720.9150.9410.9210.019
      MSEG[8]0.8990.8420.9000.9230.8960.028
      SSFormer-S[9]0.9250.8770.9140.9440.9170.018
      MSRAFormer[10]0.9230.8730.9150.9520.9170.024
      Polyp-PVT[21]0.9170.8640.9130.9470.9140.023
      Ours0.9260.8790.9170.9550.9190.023
      CVC-ClinicDBU-Net[4]0.8230.7550.8340.8390.8270.019
      DCRNet[6]0.8990.8460.9130.8930.9060.010
      CaraNet[7]0.9340.8900.9440.9400.9390.006
      MSEG[8]0.9120.8660.9240.9350.9180.007
      SSFormer-S[9]0.9180.8750.9050.9390.9100.007
      MSRAFormer[10]0.9240.8740.9450.9200.9320.008
      Polyp-PVT[21]0.9370.8890.9490.9360.9450.006
      Ours0.9410.8960.9570.9340.9490.006
    • Table 3. Segmentation results of different networks on CVC-ColonDB and ETIS datasets

      View table
      View in Article

      Table 3. Segmentation results of different networks on CVC-ColonDB and ETIS datasets

      DatasetMethodDiceMIoUSEPCF2MAE
      CVC-ConlonDBU-Net[4]0.5120.4440.5230.6210.5100.061
      DCRNet[6]0.7070.6320.7760.7190.7230.052
      CaraNet[7]0.7480.6830.7530.8930.7460.035
      MSEG[8]0.7380.6690.7520.8060.7390.038
      SSFormer-S[9]0.7740.6980.7770.8370.7660.036
      MSRAFormer[10]0.7820.7070.8030.8740.1810.028
      Polyp-PVT[21]0.8080.7270.8210.8490.8090.031
      Ours0.8140.7320.8490.8240.8250.028
      ETISU-Net[4]0.3980.3350.4820.4390.4290.036
      DCRNet[6]0.5500.4860.7460.5040.6000.095
      CaraNet[7]0.7280.6610.7750.8140.7500.017
      MSEG[8]0.7030.6320.7390.7100.7200.015
      SSFormer-S[9]0.7690.6980.8560.7430.8000.016
      MSRAFormer[10]0.7500.6790.8110.7450.7770.013
      Polyp-PVT[21]0.7870.7060.8670.7740.8200.013
      Ours0.7970.7160.8890.7610.8340.018
    • Table 4. Performance comparison of different networks (CVC-ClinicDB)

      View table
      View in Article

      Table 4. Performance comparison of different networks (CVC-ClinicDB)

      MethodParameters/MGFLOPsTrain/(rounds1)
      U-Net34.5365.52309
      DCRNet28.7053.00285
      CaraNet44.5411.45256
      SSFormer-S29.3110.11220
      MSRAFormer68.9621.29199
      Polyp-PVT25.125.30233
      Ours26.0511.00183
    • Table 5. Ablation results of each module on the CVC-ClinicDB dataset

      View table
      View in Article

      Table 5. Ablation results of each module on the CVC-ClinicDB dataset

      MethodDFAHFFDFSDiceMIoUSEPCF2
      G10.9290.8820.9350.9410.931
      G20.9300.8840.9500.9240.938
      G30.9210.8660.9220.9350.921
      G40.9410.8960.9570.9340.949
    • Table 6. Ablation results of each module on the ETIS dataset

      View table
      View in Article

      Table 6. Ablation results of each module on the ETIS dataset

      MethodDFAHFFDFSDiceMIoUSEPCF2
      G10.7820.7050.8560.7480.816
      G20.7870.7050.8750.7550.825
      G30.7800.6980.8390.7710.806
      G40.7970.7160.8890.7610.834
    Tools

    Get Citation

    Copy Citation Text

    Liming Liang, Ting Kang, Chengbin Wang, Kangquan Chen, Yulin Li. Colorectal polyp segmentation via Transformer-based adaptive feature selection[J]. Opto-Electronic Engineering, 2025, 52(3): 240279

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Article

    Received: Nov. 29, 2024

    Accepted: Feb. 6, 2025

    Published Online: May. 22, 2025

    The Author Email: Ting Kang (康婷)

    DOI:10.12086/oee.2025.240279

    Topics