Acta Optica Sinica, Volume. 41, Issue 1, 0123001(2021)
Bound States of Continuum in Optical Artificial Micro-Nanostructures: Fundamentals, Developments and Applications
[1] Yu P, Li J, Tang C et al. Controllable optical activity with non-chiral plasmonic metasurfaces[J]. Light: Science & Applications, 5, e16096(2016).
[2] Chen S Q, Li Z, Zhang Y B et al. Phase manipulation of electromagnetic waves with metasurfaces and its applications in nanophotonics[J]. Advanced Optical Materials, 6, 1800104(2018).
[5] Wen D D, Yue F Y, Liu W W et al. Geometric metasurfaces for ultrathin optical devices[J]. Advanced Optical Materials, 6, 1800348(2018).
[12] Jahani S, Jacob Z. All-dielectric metamaterials[J]. Nature Nanotechnology, 11, 23-36(2016).
[14] Limonov M F, Rybin M V, Poddubny A N et al. Fano resonances in photonics[J]. Nature Photonics, 11, 543-554(2017).
[16] Song Q J, Hu J S, Dai S W et al. 6(34): eabc1160[J]. a lasing threshold mode induced by PT symmetry. Science Advances(2020).
[17] von Neumann J, Wigner E P. Über merkwürdige diskrete eigenwerte[M]. ∥Wightman A S. The collected works of Eugene Paul Wigner. Berlin: Springer, 291-293(1993).
[20] Plotnik Y, Peleg O, Dreisow F et al. Experimental observation of optical bound states in the continuum[J]. Physical Review Letters, 107, 183901(2011).
[21] Hsu C W, Zhen B, Lee J et al. Observation of trapped light within the radiation continuum[J]. Nature, 499, 188-191(2013).
[22] Koshelev K, Lepeshov S, Liu M K et al. Asymmetric metasurfaces with high-Q resonances governed by bound states in the continuum[J]. Physical Review Letters, 121, 193903(2018).
[23] Albo A, Fekete D, Bahir G. Electronic bound states in the continuum above (Ga, In)(As, N)/(Al, Ga)As quantum wells[J]. Physical Review B, 85, 115307(2012).
[29] Xiao Y X, Ma G C, Zhang Z Q et al. Topological subspace-induced bound state in the continuum[J]. Physical Review Letters, 118, 166803(2017).
[31] Lyapina A A, Maksimov D N, Pilipchuk A S et al. Bound states in the continuum in open acoustic resonators[J]. Journal of Fluid Mechanics, 780, 370-387(2015).
[32] Sadreev A F, Pilipchuk A S, Lyapina A A. Tuning of Fano resonances by rotation of continuum: wave faucet[J]. Europhysics Letters, 117, 50011(2017).
[35] Koshelev K, Bogdanov A, Kivshar Y. Engineering with bound states in the continuum[J]. Optics and Photonics News, 31, 38-45(2020).
[36] Fan S, Suh W, Joannopoulos J D. Temporal coupled-mode theory for the Fano resonance in optical resonators[J]. Journal of the Optical Society of America A, 20, 569-572(2003).
[39] Remacle F, Munster M. Pavlov-Verevkin V B, et al. Trapping in competitive decay of degenerate states[J]. Physics Letters A, 145, 265-268(1990).
[42] Koshelev K, Favraud G, Bogdanov A et al. Nonradiating photonics with resonant dielectric nanostructures[J]. Nanophotonics, 8, 725-745(2019).
[43] Sadrieva Z, Frizyuk K, Petrov M et al. Multipole analysis of bound states in the continuum supported by a periodic array of spheres. [C]∥2019 Thirteenth International Congress on Artificial Materials for Novel Wave Phenomena (Metamaterials), September 16-21, 2019, Rome, Italy. New York: IEEE, 354-356(2019).
[46] Doeleman H M. Monticone F, den Hollander W, et al. Experimental observation of a polarization vortex at an optical bound state in the continuum[J]. Nature Photonics, 12, 397-412(2018).
[50] Rotter I, Sadreev A F. Influence of branch points in the complex plane on the transmission through double quantum dots[J]. Physical Review E, 69, 066201(2004).
[51] Rotter I, Sadreev A F. Zeros in single-channel transmission through double quantum dots[J]. Physical Review E, 71, 046204(2005).
[53] Ndangali R F, Shabanov S V. Electromagnetic bound states in the radiation continuum for periodic double arrays of subwavelength dielectric cylinders[J]. Journal of Mathematical Physics, 51, 102901(2010).
[55] Weimann S, Xu Y, Keil R et al. Compact surface Fano states embedded in the continuum of waveguide arrays[J]. Physical Review Letters, 111, 240403(2013).
[58] Ni L F, Wang Z X, Peng C et al. Tunable optical bound states in the continuum beyond in-plane symmetry protection[J]. Physical Review B, 94, 245148(2016).
[60] Wang Y F, Song J M, Dong L et al. Optical bound states in slotted high-contrast gratings[J]. Journal of the Optical Society of America B, 33, 2472-2479(2016).
[61] Wang T C, Zhang S H. Large enhancement of second harmonic generation from transition-metal dichalcogenide monolayer on grating near bound states in the continuum[J]. Optics Express, 26, 322-337(2018).
[64] Bulgakov E N, Maksimov D N, Semina P N et al. Propagating bound states in the continuum in dielectric gratings[J]. Journal of the Optical Society of America B, 35, 1218-1222(2018).
[68] Zhen B, Hsu C W, Lu L et al. Topological nature of optical bound states in the continuum[J]. Physical Review Letters, 113, 257401(2014).
[74] Chen S, Li Z, Liu W et al. From single-dimensional to multidimensional manipulation of optical waves with metasurfaces[J]. Advanced Materials, 31, 1802458(2019).
[75] Chen X, Huang L, Mühlenbernd H et al. Dual-polarity plasmonic metalens for visible light[J]. Nature Communications, 3, 1198(2012).
[77] Chen S Q, Liu W W, Li Z C et al. Metasurface-empowered optical multiplexing and multifunction[J]. Advanced Materials, 32, 1805912(2020).
[80] Mueller J P B, Rubin N A, Devlin R C et al. Metasurface polarization optics: independent phase control of arbitrary orthogonal states of polarization[J]. Physical Review Letters, 118, 113901(2017).
[81] Yang B, Liu W W, Li Z C et al. Ultrahighly saturated structural colors enhanced by multipolar-modulated metasurfaces[J]. Nano Letters, 19, 4221-4228(2019).
[82] Ni X J, Kildishev A V, Shalaev V M. Metasurface holograms for visible light[J]. Nature Communications, 4, 2807(2013).
[83] Zheng G, Mühlenbernd H, Kenney M et al. Metasurface holograms reaching 80% efficiency[J]. Nature Nanotechnology, 10, 308-312(2015).
[85] Li G X, Chen S M, Pholchai N et al. Continuous control of the nonlinearity phase for harmonic generations[J]. Nature Materials, 14, 607-612(2015).
[86] Li G X, Zhang S, Zentgraf T. Nonlinear photonic metasurfaces[J]. Nature Reviews Materials, 2, 17010(2017).
[88] Li Z, Liu W, Li Z et al. Fano-resonance-based mode-matching hybrid metasurface for enhanced second-harmonic generation[J]. Optics Letters, 42, 3117-3120(2017).
[95] Ohana D, Desiatov B, Mazurski N et al. Dielectric metasurface as a platform for spatial mode conversion in nanoscale waveguides[J]. Nano Letters, 16, 7956-7961(2016).
[97] Li Z, Kim M H, Wang C et al. Controlling propagation and coupling of waveguide modes using phase-gradient metasurfaces[J]. Nature Nanotechnology, 12, 675-683(2017).
[100] Cheng H, Wei X Y, Yu P et al. Integrating polarization conversion and nearly perfect absorption with multifunctional metasurfaces[J]. Applied Physics Letters, 110, 171903(2017).
[108] Liu Z J, Xu Y, Lin Y et al. High-Q quasibound states in the continuum for nonlinear metasurfaces[J]. Physical Review Letters, 123, 253901(2019).
[110] Mermet-Lyaudoz R, Dubois F, Hoang N V et al. -05-09)[2020-09-17]. https:∥arxiv.org/abs/1905.03868?context=physics.optics.(2019).
[112] Fedotov V A, Rose M, Prosvirnin S L et al. Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry[J]. Physical Review Letters, 99, 147401(2007).
[117] Monticone F, Alù A. Embedded photonic eigenvalues in 3D nanostructures[J]. Physical Review Letters, 112, 213903(2014).
[118] Koshelev K, Bogdanov A, Kivshar Y. Meta-optics and bound states in the continuum[J]. Science Bulletin, 64, 836-842(2019).
[119] Baryshnikova K V, Smirnova D A. Luk'Yanchuk B S, et al. Optical anapoles: concepts and applications[J]. Advanced Optical Materials, 7, 1801350(2019).
[122] Carletti L. Koshelev K, de Angelis C, et al. Giant nonlinear response at the nanoscale driven by bound states in the continuum[J]. Physical Review Letters, 121, 033903(2018).
[125] Fei Z Y, Zhao W J, Palomaki T A et al. Ferroelectric switching of a two-dimensional metal[J]. Nature, 560, 336-339(2018).
[126] Yao X H, Belyanin A. Giant optical nonlinearity of graphene in a strong magnetic field[J]. Physical Review Letters, 108, 255503(2012).
[127] Foley J M, Young S M, Phillips J D. Symmetry-protected mode coupling near normal incidence for narrow-band transmission filtering in a dielectric grating[J]. Physical Review B, 89, 165111(2014).
[131] Kodigala A, Lepetit T, Gu Q et al. Lasing action from photonic bound states in continuum[J]. Nature, 541, 196-199(2017).
[132] Rybin M, Kivshar Y. Supercavity lasing[J]. Nature, 541, 164-165(2017).
[133] Bahari B, Vallini F, Lepetit T et al. -07-16)[2020-09-17]. https:∥arxiv., org/abs/1707, 00181(2017).
[134] Ha S T, Fu Y H, Emani N K et al. Directional lasing in resonant semiconductor nanoantenna arrays[J]. Nature Nanotechnology, 13, 1042-1047(2018).
[137] Yu Z, Sun X. Acousto-optic modulation of photonic bound state in the continuum[J]. Light: Science & Applications, 9, 1(2020).
[141] Romano S, Zito G. Yépez S N L, et al. Tuning the exponential sensitivity of a bound-state-in-continuum optical sensor[J]. Optics Express, 27, 18776-18786(2019).
[142] Leitis A, Tittl A, Liu M K et al. 5(5): eaaw2871(2019).
Get Citation
Copy Citation Text
Ruoheng Chai, Wenwei Liu, Hua Cheng, Jianguo Tian, Shuqi Chen. Bound States of Continuum in Optical Artificial Micro-Nanostructures: Fundamentals, Developments and Applications[J]. Acta Optica Sinica, 2021, 41(1): 0123001
Category: Optical Devices
Received: Sep. 18, 2020
Accepted: Nov. 5, 2020
Published Online: Feb. 23, 2021
The Author Email: Cheng Hua (hcheng@nankai.edu.cn), Chen Shuqi (schen@nankai.edu.cn)