Journal of Atmospheric and Environmental Optics, Volume. 19, Issue 2, 232(2024)
Inversion of aerosol optical depth in Guiyang City based on LightGBM
[2] Sriperambudur U L, Sonnati C, Venkata N P et al. Retrieval of aerosol optical depth from oceansat-2 OCM[J]. Open Journal of Marine Science, 5, 443-454(2015).
[3] Liao H, Adams P J, Chung S H et al. Interactions between tropospheric chemistry and aerosols in a unified general circulation model[J]. Journal of Geophysical Research: Atmospheres, 108, 4001(2003).
[4] Li Z Q, Xie Y S, Shi Y S et al. A review of collaborative remote sensing observation of greenhouse gases and aerosol with atmospheric environment satellites[J]. National Remote Sensing Bulletin, 26, 795-816(2022).
[5] Wang X, Wen H, Shi J S et al. Optical and microphysical properties of natural mineral dust and anthropogenic soil dust near dust source regions over northwestern China[J]. Atmospheric Chemistry and Physics, 18, 2119-2138(2018).
[6] Wang A Y, Kang P, Zhang Y et al. Spatial differentiation and driving factors of aerosol optical depth in Sichuan Basin from 2003 to 2018[J]. China Environmental Science, 42, 528-538(2022).
[7] Jiang M D, Chen L, He Y Q et al. Nighttime aerosol optical depth retrievals from VIIRS day/night band data[J]. National Remote Sensing Bulletin, 26, 493-504(2022).
[8] Ge B Y, Yang L K, Chen X F et al. Study on aerosol optical depth retrieval over land from Himawari-8 data based on dark target method[J]. Journal of Remote Sensing, 22, 38-50(2018).
[9] Yang J C, Li Z Q, Chen X F et al. Retrieval system of aerosol optical depth based on high spatio-temporal resolution satellite data[J]. Journal of Atmospheric and Environmental Optics, 13, 112-120(2018).
[10] Ma X Y, Chen Z H, Su X et al. GF-4 aerosol retrieval study of enhanced surface reflectance library support algorithm[J]. Journal of Remote Sensing, 24, 578-595(2020).
[11] Tanre D, Deschamps P Y, Devaux C et al. Estimation of Saharan aerosol optical thickness from blurring effects in thematic mapper data[J]. Journal of Geophysical Research:Atmospheres, 93, 15955-15964(1988).
[12] Ma X Y. Summer Aerosol Optical Depth Retrieval Based on Geostationary Satellites GF-4 and H8[D](2019).
[13] Kaufman Y J, Tanré D, Remer L A et al. Operational remote sensing of tropospheric aerosol over land from EOS moderate resolution imaging spectroradiometer[J]. Journal of Geophysical Research:Atmospheres, 102, 17051-17067(1997).
[14] Hsu N C, Jeong M J, Bettenhausen C et al. Enhanced deep blue aerosol retrieval algorithm: The second generation[J]. Journal of Geophysical Research:Atmospheres, 118, 9296-9315(2013).
[15] Wang Z T, Xin J Y, Jia S L et al. Retrieval of AOD from GF-1 16 m camera via DDV algorithm[J]. Journal of Remote Sensing, 19, 530-538(2015).
[16] Bilal M, Nichol J E, Bleiweiss M P et al. A Simplified high resolution MODIS Aerosol Retrieval Algorithm (SARA) for use over mixed surfaces[J]. Remote Sensing of Environment, 136, 135-145(2013).
[17] Wei J, Sun L. Comparison and evaluation of different MODIS aerosol optical depth products over the Beijing-Tianjin-Hebei region in China[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 10, 835-844(2017).
[18] Shen W Q. Research on High Spatial Resolution AOD Inversion and PM2.5 Estimation:A Case Study in Beijing[D](2020).
[19] Ristovski K, Vucetic S, Obradovic Z. Uncertainty analysis of neural-network-based aerosol retrieval[J]. IEEE Transactions on Geoscience and Remote Sensing, 50, 409-414(2012).
[20] Huttunen J, Kokkola H, Mielonen T et al. Retrieval of aerosol optical depth from surface solar radiation measurements using machine learning algorithms, non-linear regression and a radiative transfer based look-up table[J]. Atmospheric Chemistry and Physics, 16, 8181-8191(2016).
[21] Liang T C, Sun L, Wang Y J. Retrieval of regional aerosol optical depth using deep learning[J]. Acta Optica Sinica, 41, 0401002(2021).
[22] Ke G L, Meng Q, Finely T et al. LightGBM: A highly efficient gradient boosting decision tree[C](2017).
[23] Li Z S, Liang X G, Jin Y K et al. A comparative study on edictive effect of PM2.5 in Beijing based on tree models[J]. Environmental Engineering, 39, 106-113(2021).
[24] Yu D C, Zhao W F, Nie K et al. Visibility forecast model based on LightGBM algorithm[J]. Journal of Computer Applications, 41, 1035-1041(2021).
[25] Chen J K, Mu F Y, Zhang Y C et al. Comparative analysis of hourly PM2.5 prediction based on multiple machine learning models[J]. Journal of Nanjing Forestry University (Natural Sciences Edition), 46, 152-160(2022).
[26] Song S H, Liu S H, Wang K et al. Remote sensing retrieval of AOD and coupling relationship to land use in Guiyang[J]. Journal of Guizhou Normal University (Natural Sciences), 36, 59-67(2018).
[27] Fu T, Zhang X Y, Zhao F F et al. Analysis on the correlation between aerosol optical depth and PM2.5 in Guiyang City[J]. Territory & Natural Resources Study, 29-33(2021).
[28] Yin H, Liu H, Chen J. Analysis and monitor on annual changes of PM10 concentration based on remote sensing in Guizhou Province[J]. Environmental Science and Management, 40, 114-118(2015).
[29] Li Z B, Wang N, Zhang Z L et al. Validation and analyzation of MODIS aerosol optical depth products over China[J]. China Environmental Science, 40, 4190-4204(2020).
[30] Guo X. Long Time Series Region AOD Remote Sensing Monitoring With Spatial and Temporal Characteristics of the Study[D](2022).
[31] Sun Y J, Wang Z H, Qin Q M et al. Retrieval of surface albedo based on GF-4 geostationary satellite image data[J]. Journal of Remote Sensing, 22, 220-233(2018).
[32] Liu Z, Sun X L, Liu D et al. Spatio-temporal characteristics of aerosol optical depth over Beijing-Tianjin-Hebei-Shandong-Henan-Shanxi-Shaanxi region during 2001―2017[J]. Acta Scientiae Circumstantiae, 38, 3177-3184(2018).
Get Citation
Copy Citation Text
Lilan PU, Xianyun ZHANG. Inversion of aerosol optical depth in Guiyang City based on LightGBM[J]. Journal of Atmospheric and Environmental Optics, 2024, 19(2): 232
Category:
Received: Oct. 20, 2022
Accepted: --
Published Online: Jun. 24, 2024
The Author Email: Xianyun ZHANG (mec.xyzhang@gzu.edu.cn)