Journal of Inorganic Materials, Volume. 35, Issue 2, 145(2020)

Bacterial Cellulose Based Nano-biomaterials for Energy Storage Applications

Li-Na MA1, Chuan SHI2, Ning ZHAO2, Zhi-Jie BI2, Xiang-Xin GUO2、*, and Yu-Dong HUANG3
Author Affiliations
  • 1College of Chemistry & Chemical Engineering, Qingdao University, Qingdao 266071, China
  • 2College of Physical Sciences, Qingdao University, Qingdao 266071, China
  • 3School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
  • show less
    References(60)

    [1] LI S H, HUANG D K, ZHANG B Y et al. Flexible supercapacitors based on bacterial cellulose paper electrodes[J]. Adv. Energy Mater., 4, 1301655(2014).

    [2] CHEN L F, HUANG Z H, LIANG H W et al. Three-dimensional heteroatom-doped carbon nanofiber networks derived from bacterial cellulose for supercapacitors[J]. Adv. Funct. Mater., 24, 5104-5111(2014).

    [3] WU Z Y, LIANG H W, CHEN L F et al. Bacterial cellulose: a robust platform for design of three dimensional carbon-based functional nanomaterials[J]. Acc. Chem. Res., 49, 96-105(2016).

    [4] MA L N, LIU R, NIU H J et al. Flexible and freestanding electrode based on polypyrrole/graphene/bacterial cellulose paper for supercapacitor[J]. Compos. Sci. Technol., 137, 87-93(2016).

    [5] IGUCHI M, YAMANAKA S, BUDHIOKO A. Bacterial cellulose— a masterpiece of nature’s arts[J]. J. Mater. Sci., 35, 261-270(2000).

    [6] TIAN X D, LI X, YANG T et al. Recent advances on synthesis and supercapacitor application of binary metal oxide[J]. J. Inorg. Mater., 32, 459-468(2017).

    [7] ZENG Y F, XIN G X, BU L C K et al. One-step preparation and electrochemical performance of 3D reduced graphene oxide/NiO as supercapacitor electrodes materials[J]. J. Inorg. Mater., 33, 1070-1076(2018).

    [8] QU L, PEI H M, KONG R M et al. Novel turn-on fluorescent detection of alkaline phosphatase based on green synthesized carbon dots and MnO2 nanosheets[J]. Talanta, 165, 136-142(2017).

    [9] ZHAO J, GONG X B, ZHANG R M et al. Enhanced biosensing platform constructed using urchin-like ZnO-Au@CdS microspheres based on the combination of photoelectrochemical and bioetching strategies[J]. Sens. Actuators B: Chem., 255, 1753-1761(2018).

    [10] YAO J J, JI P, NAN SHENG N et al. Hierarchical core-sheath polypyrrole@carbon nanotube/bacterial cellulose macrofibers with high electrochemical performance for allsolid-state supercapacitors[J]. Electrochim. Acta, 283, 1578-1588(2018).

    [11] LI J, ZHANG G F, CHEN N et al. Built structure of ordered vertically aligned codoped carbon nanowire arrays for supercapacitors[J]. ACS Appl. Mater. Interfaces, 9, 24840-24845(2017).

    [12] LONG C L, QI D P, WEI T et al. Nitrogen-doped carbon networks for high energy density supercapacitors derived from polyaniline coated bacterial cellulose[J]. Adv. Funct. Mater., 24, 3953-3961(2014).

    [13] LEI W, HAN L L, XUAN C J et al. Nitrogen-doped carbon nanofibers derived from polypyrrole coated bacterial cellulose as high-performance electrode materials for supercapacitors and Li-ion batteries[J]. Electrochim. Acta, 210, 130-137(2016).

    [14] LEE K Y, QIAN H, TAY F H et al. Bacterial cellulose as source for activated nanosized carbon for electric double layer capacitors[J]. J. Mater. Sci., 48, 367-376(2013).

    [15] YU W D, LIN W R, SHAO X F et al. High performance supercapacitor based on Ni3S2/carbon nanofibers and carbon nanofibers electrodes derived from bacterial cellulose[J]. J. Power Sour., 272, 137-143(2014).

    [16] LIU R, MA L N, MEI J et al. Large areal mass, mechanically tough and freestanding electrode based on heteroatom-doped carbon nanofibers for flexible supercapacitors[J]. Chem-Eur. J., 23, 2610-2618(2017).

    [17] YUAN D, HUANG X, YAN J et al. Porous carbon nanofibers derived from bacterial cellulose for sustainable energy storage[J]. Science of Advanced Materials, 5, 1694-1700(2013).

    [18] JIANG Y T, YAN J, WU X L et al. Facile synthesis of carbon nanofibers-bridged porous carbon nanosheets for high-performance supercapacitors[J]. J. Power Sour., 307, 190-198(2016).

    [19] LAI F L, MIAO Y E, ZUO L Z et al. Carbon aerogels derived from bacterial cellulose/polyimide composites as versatile adsorbents and supercapacitor electrodes[J]. ChemNanoMat, 2, 212-219(2016).

    [20] WU Z Y, LIANG H W, LI C et al. Dyeing bacterial cellulose pellicles for energetic heteroatom doped carbon nanofiber aerogel[J]. Nano Res., 7, 1861-1872(2014).

    [21] LUO H L, DONG J J, ZHANG Y et al. Constructing 3D bacterial cellulose/graphene/polyaniline nanocomposites by novel layer-by- layer in situ culture toward mechanically robust and highly flexible freestanding electrodes for supercapacitors[J]. Chem. Eng. J., 334, 1148-1158(2018).

    [22] WU H, ZHANG Y Z, YUAN W Y et al. Highly flexible, foldable and stretchable Ni-Co layered double hydroxide/polyaniline/bacterial cellulose electrodes for high performance all-solid-state supercapacitors[J]. J. Mater. Chem. A, 6, 16617-16626(2018).

    [23] LAI F L, MIAO Y, ZUO L Z et al. Biomass-derived nitrogen- doped carbon nanofiber network: a facile template for decoration of ultrathin nickel-cobalt layered double hydroxide nanosheets as high-performance asymmetric supercapacitor electrode[J]. Small, 12, 3235-3244(2016).

    [24] CHEN L F, HUANG Z H, LIANG H W et al. Bacterial-cellulose- derived carbon nanofiber@MnO2 and nitrogen-doped carbon nanofiber electrode materials: an asymmetric supercapacitor with high energy and power density[J]. Adv. Mater., 25, 4746-4752(2013).

    [25] CHEN L F, HUANG Z H, LIANG H W et al. Flexible all-solid-state high-power supercapacitor fabricated with nitrogen- doped carbon nanofiber electrode material derived from bacterial cellulose[J]. Energy Environ. Sci., 6, 3331-3338(2013).

    [26] HU Z X, LI S S, CHENG P P et al. N,P-co-doped carbon nanowires prepared from bacterial cellulose for supercapacitor[J]. J. Mater. Sci., 51, 2627-2633(2016).

    [27] LI S M, YANG S Y, WANG Y S et al. N-doped structures and surface functional groups of reduced graphene oxide and their effect on the electrochemical performance of supercapacitor with organic electrolyte[J]. J. Power Sources, 278, 218-229(2015).

    [28] ZHAO L, HU Y S, LI H et al. Porous Li4Ti5O12 coated with N-doped carbon from ionic liquids for Li-Ion batteries[J]. Advanced Materials, 23, 1385-1388(2011).

    [29] HAO L, LUO B, LI X et al. Terephthalonitrile-derived nitrogen- rich networks for high performance supercapacitors[J]. Energy & Environmental Science, 5, 9747-9751(2012).

    [30] LIU Y Q, YAN Y, LI K et al. A high-areal-capacity lithium-sulfur cathode achieved by a boron-doped carbon-sulfur aerogel with consecutive core-shell structures[J]. Chem. Commun., 55, 1084-1087(2019).

    [33] GIGOT A, FONTANA M, PIRRI C F et al. Graphene/ruthenium active species aerogel as electrode for supercapacitor applications[J]. Materials, 11, 57(2018).

    [34] XU X Z, ZHOU J, NAGARAJU D H et al. Flexible, highly graphitized carbon aerogels based on bacterial cellulose/lignin: catalyst-free synthesis and its application in energy storage devices[J]. Adv. Funct. Mater., 25, 3193-3202(2015).

    [35] MA L N, LIU R, NIU H J et al. Freestanding conductive film based on polypyrrole/bacterial cellulose/graphene paper for flexible supercapacitor: large areal mass exhibits excellent areal capacitance[J]. Electrochim. Acta, 222, 429-437(2016).

    [36] LIU R, MA L N, HUANG S et al. Large areal mass, flexible and freestanding polyaniline/bacterial cellulose/graphene film for high- performance supercapacitors[J]. RSC Adv., 6, 107426-107432(2016).

    [37] MULLER D, RECOUVREUX D O S, PORTO L M et al. Chemical in situ polymerization of polypyrrole on bacterial cellulose nanofibers[J]. Synthetic Met., 161, 106-111(2011).

    [38] LIU Y, ZHOU J, TANG J et al. Three-dimensional, chemically bonded polypyrrole/bacterial cellulose/graphene composites for high- performance supercapacitors[J]. Chem. Mater., 27, 7034-7041(2015).

    [39] WU H, HUANG Y A, XU F et al. Energy harvesters for wearable and stretchable electronics: from flexibility to stretchability[J]. Adv. Mater., 28, 9881-9919(2016).

    [40] ZHENG Y, YANG Y B, CHEN S S et al. Smart, stretchable and wearable supercapacitors: prospects and challenges[J]. CrystEngComm, 18, 4218-4235(2016).

    [41] KANG Y J, CHUN S J, LEE S S et al. All-solid-state flexible supercapacitors fabricated with bacterial nanocellulose papers, carbon nanotubes, and triblock-copolymer ion gels[J]. ACS Nano, 6, 6400-6406(2012).

    [42] SUMBOJA A, FOO C Y, WANG X et al. Large areal mass, flexible and free-standing reduced graphene oxide/manganese dioxide paper for asymmetric supercapacitor device[J]. Adv. Mater., 25, 2809-2815(2013).

    [43] XIONG Z Y, LIAO C L, HAN W H et al. Mechanically tough large-area hierarchical porous graphene films for high-performance flexible supercapacitor applications[J]. Adv. Mater., 27, 4469-4475(2015).

    [44] LIU Y, ZHOU J, ZHU E W et al. Facile synthesis of bacterial cellulose fibres covalently intercalated with graphene oxide by one- step cross-linking for robust supercapacitors[J]. J. Mater. Chem. C, 3, 1011-1017(2015).

    [45] MA L N, LIU R, NIU, H J et al. Flexible and freestanding supercapacitor electrodes based on nitrogen-doped carbon networks/ graphene/bacterial cellulose with ultrahigh areal capacitance[J]. ACS Appl. Mater. Interfaces, 8, 33608-33618(2016).

    [46] XIA C, CHEN W, WANG X B et al. Highly stable supercapacitors with conducting polymer core-shell electrodes for energy storage applications[J]. Adv. Energy Mater., 5, 1401805(2015).

    [47] YANG C Y, SHEN J L, WANG C Y et al. All-solid-state asymmetric supercapacitor based on reduced graphene oxide/carbon nanotube and carbon fiber paper/polypyrrole electrodes[J]. J. Mater. Chem. A, 2, 1458-1464(2014).

    [48] ZHAO Y, LIU J, HU Y et al. Highly compression-tolerant supercapacitor based on polypyrrole-mediated graphene foam electrodes[J]. Adv. Mater., 25, 591-595(2013).

    [49] SONG Y, XU J L, LIU X X. Electrochemical anchoring of dual doping polypyrrole on graphene sheets partially exfoliated from graphite foil for high-performance supercapacitor electrode[J]. J. Power Sour., 249, 48-58(2014).

    [50] LEE H J, CHUANG T J, KWON H J et al. Fabrication and evaluation of bacterial cellulose-polyaniline composites by interfacial polymerization[J]. Cellulose, 19, 1251-1258(2012).

    [51] XU J, ZHU L G, BAI Z K et al. Conductive polypyrrole-bacterial cellulose nanocomposite membranes as flexible supercapacitor electrode[J]. Org. Electron., 14, 3331-3338(2013).

    [52] PENG S, FAN L L, WEI C Z et al. Flexible polypyrrole/copper sulfide/bacterial cellulose nanofibrous composite membranes as supercapacitor electrodes[J]. Carbohyd. Polym., 157, 344-352(2017).

    [53] PENG S, XU Q, FAN L L et al. Flexible polypyrrole/cobalt sulfide/ bacterial cellulose composite membranes for supercapacitor application[J]. Synthetic Met., 222, 285-292(2016).

    [54] PENG S, FAN L L, WEI C Z et al. Polypyrrole/nickel sulfide/ bacterial cellulose nanofibrous composite membranes for flexible supercapacitor electrodes[J]. Cellulose, 23, 2639-2651(2016).

    [55] WANG F, KIM H J, PARK S et al. Bendable and flexible supercapacitor based on polypyrrole-coated bacterial cellulose core-shell composite network[J]. Compos. Sci. Technol., 128, 33-40(2016).

    [56] YUAN L, YAO B, HU B et al. Polypyrrole-coated paper for flexible solid-state energy storage[J]. Energy Environ. Sci., 6, 470-476(2013).

    [57] LIU R, MA L N, HUANG S et al. A flexible polyaniline/ graphene/bacterial cellulose supercapacitor electrode[J]. New J. Chem., 41, 857-864(2017).

    [58] MA L N, LIU R, WANG F et al. Facile synthesis of Ni(OH)2/graphene/bacterial cellulose paper for large areal mass, mechanically tough and flexible supercapacitor electrodes[J]. J. Power Sour., 335, 76-83(2016).

    [59] LIU R, MA L N, HUANG S et al. Large areal mass and high scalable and flexible cobalt oxide/graphene/bacterial cellulose electrode for supercapacitors[J]. J. Phys. Chem. C, 120, 28480-28488(2016).

    [60] WANG X, KONG D, ZHANG Y et al. All-biomaterial supercapacitor derived from bacterial cellulose[J]. Nanoscale, 8, 9146-9150(2016).

    Tools

    Get Citation

    Copy Citation Text

    Li-Na MA, Chuan SHI, Ning ZHAO, Zhi-Jie BI, Xiang-Xin GUO, Yu-Dong HUANG. Bacterial Cellulose Based Nano-biomaterials for Energy Storage Applications[J]. Journal of Inorganic Materials, 2020, 35(2): 145

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: REVIEW

    Received: Mar. 12, 2019

    Accepted: --

    Published Online: Jan. 27, 2021

    The Author Email: Xiang-Xin GUO (xxguo@qdu.edu.cn)

    DOI:10.15541/jim20190108

    Topics