Laser & Optoelectronics Progress, Volume. 59, Issue 22, 2210007(2022)

Obstacle Detection for a Pipeline Point Cloud Based on Time Series and Neighborhood Analysis

Shiyu Lin1,3, Xuejiao Yan2, Zhe Xie2, Hongwen Fu2, Song Jiang2, Hongzhi Jiang1,3, Xudong Li1,3、*, and Huijie Zhao1,3、**
Author Affiliations
  • 1Key Laboratory of Precision Opto-Mechatronics Technology, Ministry of Education, School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing 100191, China
  • 2Shanghai Aerospace System Research Institute, Shanghai 201108, China
  • 3Qingdao Research Institute of Beihang University, Qingdao 266100, Shandong , China
  • show less
    References(18)

    [1] Cheng H, Yu J Y, Dai Y N et al. Overview and prospect for technologies oil and gas pipeline inspection robot[J]. Journal of Wuhan Institute of Technology, 43, 324-333(2021).

    [2] Lin L L, Guo Y, Liu J et al. Application of ultrasonic guided wave technology in the pipelines corrosion detection[J]. Petro & Chemical Equipment, 24, 125-127, 130(2021).

    [3] Niu G L, Sun X Y, Li X C et al. Research on eddy current non-destructive testing system of internal surface of oil and gas pipeline[J]. Instrument Technique and Sensor, 86-89, 126(2021).

    [4] Chen A J, Li J Z, Li D D. Improved randomized algorithm for circle detection[J]. Opto-Electronic Engineering, 33, 91-95(2006).

    [5] Ma B B, Li Y, Neng C X. The detection of inner-pipeline obstruction with laser projection photograph method[J]. Opto-Electronic Engineering, 40, 113-117(2013).

    [6] Ma G. Current status and development trend of in-line inspection of oil & gas pipeline[J]. Petrochemical Safety and Environmental Protection Technology, 37, 6, 26-29(2021).

    [7] Hou W F. Comprehensive application of nondestructive testing technology in pressure pipeline inspection[J]. Modern Industrial Economy and Informationization, 11, 142-144(2021).

    [8] Dang N, Wang W B, Zhang T et al. 3D simulation and experiment of pulsed eddy current testing for pipeline corrosion[J]. Nondestructive Testing, 39, 57-60, 74(2017).

    [9] Wang H M, Han Z G, Chen L H. A multi-resolution image fusion algorithm without reconstruction[J]. Opto-Electronic Engineering, 38, 86-92(2011).

    [11] Tang G, Deng X S, Wang Q Y. Research on point cloud filtering algorithm based on density clustering[J]. Laser & Optoelectronics Progress, 59, 1628003(2022).

    [12] Liu H X, Chen W H, Liu S Y. Multi-frame point cloud fusion algorithm based on IMU and dynamic target detection[J]. Application Research of Computers, 38, 2179-2182(2021).

    [13] Wang W Q, Li Z C, Fu Y J et al. Multi-factor segmentation of point cloud based on improved multi-rule region growing[J]. Acta Optica Sinica, 41, 0528001(2021).

    [16] Lei X D, Wang H T, Zhao Z Z. Small-sample airborne LiDAR point cloud classification based on transfer learning and fully convolutional network[J]. Chinese Journal of Lasers, 48, 1610001(2021).

    [18] Cao X, Lin Z X, Song S L et al. Multispectral LiDAR point cloud denoising based on color clustering[J]. Laser & Optoelectronics Progress, 58, 1228002(2021).

    Tools

    Get Citation

    Copy Citation Text

    Shiyu Lin, Xuejiao Yan, Zhe Xie, Hongwen Fu, Song Jiang, Hongzhi Jiang, Xudong Li, Huijie Zhao. Obstacle Detection for a Pipeline Point Cloud Based on Time Series and Neighborhood Analysis[J]. Laser & Optoelectronics Progress, 2022, 59(22): 2210007

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Image Processing

    Received: Aug. 18, 2021

    Accepted: Oct. 13, 2021

    Published Online: Sep. 23, 2022

    The Author Email: Xudong Li (xdli@buaa.edu.cn), Huijie Zhao (hjzhao@buaa.edu.cn)

    DOI:10.3788/LOP202259.2210007

    Topics