Journal of the Chinese Ceramic Society, Volume. 52, Issue 9, 2827(2024)

Research Progress in Polymer Derived Ceramics Conversion Ultra-High Temperature Ceramics and Composite Materials

JIANG Tianxing1, ZHOU Tianci1, WEN Qingbo1, YU Zhaoju2,3、*, and XIONG Xiang1
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • show less
    References(85)

    [2] [2] IONESCU E, BERNARD S, LUCAS R, et al. Polymer-derived ultra-high temperature ceramics (UHTCs) and related materials[J]. Adv Eng Mater, 2019, 21(8): 190–202.

    [3] [3] SQUIRE T H, MARSCHALL J. Material property requirements for analysis and design of UHTC components in hypersonic applications[J]. J Eur Ceram Soc, 2010, 30(11): 2239–2251.

    [5] [5] RAO N. Materials for gas turbines–An overview[J]. Advances in Gas Turbine Technology, 2011, 23(6): 378–385.

    [6] [6] REED R C. The superalloys: fundamentals and applications[M].London: Cambridge University Press, 2006: 124–136.

    [7] [7] SPEAR K, WUCHINA E, WACHSMAN E D. High temperature materials[J]. Electrochem Soc Interface, 2006, 15(1): 48–51.

    [8] [8] WUCHINA E, OPILA E, OPEKA M, et al. UHTCs: Ultra-high temperature ceramic materials for extreme environment applications[J].Electrochem Soc Interface, 2007, 16(4): 30–36.

    [9] [9] OPEKA M M, TALMY I G, ZAYKOSKI J A. Oxidation-based materials selection for 2000℃ + hypersonic aerosurfaces: Theoretical considerations and historical experience[J]. J Mater Sci, 2004, 39(19):5887–5904.

    [10] [10] AINGER F H J. The Preparation of Phosphorus-Nitrogen Compounds as Non-Porous Solids[J]. Angewandte Chemie-International Edition,1960, D-13187(71): 653–653.

    [11] [11] FRITZ G, RAABE B. Bildung siliciumorganischer verbindungen. V.die thermische zersetzung von Si(CH3)4 und Si(C2H5)4[J]. Zeitschrift Anorg Allge Chemie, 1956, 286(3/4): 149–167.

    [12] [12] YAJIMA S, HASEGAWA Y, OKAMURA K, et al. Development of high tensile strength silicon carbide fibre using an organosilicon polymer precursor[J]. Nature, 1978, 273: 525–527.

    [13] [13] WEN Q B, RIEDEL R, IONESCU E. Significant improvement of the short-term high-temperature oxidation resistance of dense monolithic HfC/SiC ceramic nanocomposites upon incorporation of Ta[J]. Corros Sci, 2018, 145: 191–198.

    [14] [14] ZHAO L Y, JIA D C, DUAN X M, et al. Oxidation of ZrC–30vol% SiC composite in air from low to ultrahigh temperature[J]. J Eur Ceram Soc, 2012, 32(4): 947–954.

    [15] [15] PARTHASARATHY T A, RAPP R A, OPEKA M, et al. A model for the oxidation of ZrB2, HfB2 and TiB2[J]. Acta Mater, 2007, 55(17):5999–6010.

    [16] [16] CARNEY C, PAUL A, VENUGOPAL S, et al. Qualitative analysis of hafnium diboride based ultra high temperature ceramics under oxyacetylene torch testing at temperatures above 2100℃[J]. J Eur Ceram Soc, 2014, 34(5): 1045–1051.

    [21] [21] BARRIOS E, ZHAI L. A review of the evolution of the nanostructure of SiCN and SiOC polymer derived ceramics and the impact on mechanical properties[J]. Mol Syst Des Eng, 2020, 5(10): 1606–1641.

    [22] [22] COLOMBO P, MERA G, RIEDEL R, et al. Polymer-derived ceramics:40 years of research and innovation in advanced ceramics[J]. J Am Ceram Soc, 2010, 93(7): 1805–1837.

    [24] [24] THORNE K, TING S J, CHU C J, et al. Synthesis of TiC via polymeric titanates: The preparation of fibres and thin films[J]. J Mater Sci, 1992, 27(16): 4406–4414.

    [25] [25] LI K J, GUO L J, WANG Y, et al. Synthesis and thermal performance of polymer precursor for ZrC ceramic[J]. Ceram Int, 2021, 47(20):28806–28810.

    [26] [26] A X Y T, C, B W F Q, et al. New route to synthesize preceramic polymers for zirconium carbide[J]. Chin Chem Lett, 2012, 23(9):1075–1078.

    [27] [27] XIE Y L, SANDERS T H Jr, SPEYER R F. Solution-based synthesis of submicrometer ZrB2 and ZrB2–TaB2[J]. J Am Ceram Soc, 2008,91(5): 1469–1474.

    [28] [28] KUROKAWA Y, ISHIZAKA T, SUZUKI M. Preparation of refractory nitride fibers by thermal decomposition of transition metal(Ti, Nb) alkoxide-cellulose precursor gel fibers in NH3 atmosphere[J].J Mater Sci, 2001, 36(2): 301–306.

    [29] [29] LI F P, WANG W H, DANG W, et al. Microstructural features and oxidation resistance of (Ti, Zr)C solid solution nanofibers fabricated using polymeric precursors[J]. Ceram Int, 2019, 45(18): 24941–24945.

    [30] [30] LANG H, SEYFERTH D. Pyrolysis of metallocene complexes(ηC5H4R)2MR: An organometallic route to metal carbide (MC) materials (M = Ti, Zr, Hf)[J]. Appl Org Chem, 1990, 4(6): 599–606.

    [31] [31] SCHWAB S T, STEWART C A, DUDECK K W, et al. Polymeric precursors to refractory metal borides[J]. J Mater Sci, 2004, 39(19):6051–6055.

    [32] [32] LI H, GOU Y Z, CHEN S G, et al. Synthesis and characterization of soluble and meltable Zr-containing polymers as the single-source precursor for Zr(C, N) multinary ceramics[J]. J Mater Sci, 2018, 53(15):10933–10945.

    [33] [33] BECHELANY M C, PROUST V, LALE A, et al. Nanocomposites through the chemistry of single-source precursors: Understanding the role of chemistry behind the design of monolith-type nanostructured titanium nitride/silicon nitride[J]. Chemistry, 2017, 23(4): 832–845.

    [34] [34] GAO Q, HAN C, WANG X Z, et al. Synthesis of a meltable polyzirconosilane precursor for SiZrNC multinary ceramics[J]. J Eur Ceram Soc, 2022, 42(6): 2577–2585.

    [35] [35] ZHANG Q C, GOU Y Z, WANG J L, et al. Preparation and characterization of polymer-derived Zr/Si/C multiphase ceramics and microspheres with electromagnetic wave absorbing capabilities[J]. J Eur Ceram Soc, 2017, 37(5): 1909–1916.

    [36] [36] WANG H, GAO B, CHEN X B, et al. Synthesis and pyrolysis of a novel preceramic polymer PZMS from PMS to fabricate high-temperature-resistant ZrC/SiC ceramic composite[J]. Appl Org Chem, 2013, 27(3): 166–173.

    [37] [37] GLEITER H. Nanostructured materials: State of the art and perspectives[J]. Nanostruct Mater, 1995, 6(1/4): 3–14.

    [38] [38] IONESCU E, KLEEBE H J, RIEDEL R. Silicon-containing polymer-derived ceramic nanocomposites (PDC–NCs): Preparative approaches and properties[J]. Chem Soc Rev, 2012, 41(15):5032–5052.

    [39] [39] YUAN J, HAPIS S, BREITZKE H, et al. Single-source-precursor synthesis of hafnium-containing ultrahigh-temperature ceramic nanocomposites (UHTC-NCs)[J]. Inorg Chem, 2014, 53(19):10443–10455.

    [40] [40] WEN Q B, XU Y P, XU B B, et al. Single-source-precursor synthesis of dense SiC/HfCxN1?x-based ultrahigh-temperature ceramic nanocomposites[J]. Nanoscale, 2014, 6(22): 13678–13689.

    [41] [41] WEN Q B, FENG Y, YU Z J, et al. Microwave absorption of SiC/HfCxN1?x/C ceramic nanocomposites with HfCxN1?x–carbon core–shell particles[J]. J Am Ceram Soc, 2016, 99(8): 2655–2663.

    [42] [42] WEN Q B, YU Z J, XU Y P, et al. SiC/HfyTa1–yCxN1–x/C ceramic nanocomposites with HfyTa1–yCxN1–x-carbon core–shell nanostructure and the influence of the carbon-shell thickness on electrical properties[J]. J Mater Chem C, 2018, 6(4): 855–864.

    [43] [43] LU L, WEN T H, LI W, et al. Single-source-precursor synthesis of dense monolithic SiC/(Ti0.25Zr0.25Hf0.25Ta0.25)C ceramic nanocomposite with excellent high-temperature oxidation resistance[J]. J Eur Ceram Soc, 2024, 44(2): 595–609.

    [44] [44] YU Z J, YANG Y J, MAO K W, et al. Single-source-precursor synthesis and phase evolution of SiC–TaC–C ceramic nanocomposites containing core-shell structured TaC@C nanoparticles[J]. J Adv Ceram,2020, 9(3): 320–328.

    [45] [45] YEH J W. Recent progress in high-entropy alloys[J]. Ann Chim Sci Mat, 2006, 31(6): 633–648.

    [46] [46] DU B, LIU H H, CHU Y H. Fabrication and characterization of polymer-derived high-entropy carbide ceramic powders[J]. J Am Ceram Soc, 2020, 103(8): 4063–4068.

    [47] [47] SUN Y N, YE L, ZHANG Y Q, et al. Synthesis of high entropy carbide ceramics via polymer precursor route[J]. Ceram Int, 2022,48(11): 15939–15945.

    [49] [49] YAN C L, LI Q, SHI Y A, et al. Ablation behavior of Cf/ZrC–SiC and Cf/SiC composites produced by precursor infiltration and pyrolysis combined with gaseous silicon infiltration[J]. Corros Sci, 2022, 209:110717.

    [50] [50] WU H T, ZHANG Q, ZHANG L. Effect of ZrC content on the properties of biomorphic C–ZrC–SiC composites prepared using hybrid precursors of novel organometallic zirconium polymer and polycarbosilane[J]. J Eur Ceram Soc, 2019, 39(4): 890–897.

    [51] [51] LI K Z, XIE J, LI H J, et al. Ablative and mechanical properties of C/C–ZrC composites prepared byPrecursor infiltration and pyrolysis process[J]. J Mater Sci Technol, 2015, 31(1): 77–82.

    [52] [52] LI Y, MENG X J, JIA Y, et al. Properties of C/C–ZrC composites prepared by precursor infiltration and pyrolysis with a meltable precursor[J]. Mater Res Express, 2019, 6(8): 085632.

    [53] [53] LI Y, CHEN S A, MA X, et al. Influence of preparation temperature on the properties of C/ZrC composites[J]. J Alloys Compd, 2017, 690:206–211.

    [54] [54] JIA Y, LI Y, CHENG H F, et al. Microstructure and properties of C/C–ZrC composites with matrix modification by slurry infiltration[J]. Ceram Int, 2023, 49(8): 13074–13080.

    [55] [55] LI K Z, XIE J, FU Q G, et al. Effects of porous C/C density on the densification behavior and ablation property of C/C–ZrC–SiC composites[J]. Carbon, 2013, 57: 161–168.

    [56] [56] FENG B, LI H J, ZHANG Y L, et al. Effect of SiC/ZrC ratio on the mechanical and ablation properties of C/C–SiC–ZrC composites[J].Corros Sci, 2014, 82: 27–35.

    [57] [57] WU X W, SU Z A, HUANG Q Z, et al. Effect of ZrC particle distribution on the ablation resistance of C/C–SiC–ZrC composites fabricated using precursor infiltration pyrolysis[J]. Ceram Int, 2020,46(10): 16062–16067.

    [58] [58] WANG S L, LI H, REN M S, et al. Microstructure and ablation mechanism of C/C–ZrC–SiC composites in a plasma flame[J]. Ceram Int, 2017, 43(14): 10661–10667.

    [59] [59] LI H J, YAO X Y, ZHANG Y L, et al. Effect of heat flux on ablation behaviour and mechanism of C/C–ZrB2–SiC composite under oxyacetylene torch flame[J]. Corros Sci, 2013, 74: 265–270.

    [60] [60] YANG X, SU Z A, HUANG Q Z, et al. Effects of oxidizing species on ablation behavior of C/C–ZrB2–ZrC–SiC composites prepared by precursor infiltration and pyrolysis[J]. Ceram Int, 2016, 42(16):19195–19205.

    [61] [61] LIU L, LI H J, FENG W, et al. Ablation in different heat fluxes of C/C composites modified by ZrB2–ZrC and ZrB2–ZrC–SiC particles[J].Corros Sci, 2013, 74: 159–167.

    [62] [62] XUE L, SU Z A, YANG X, et al. Microstructure and ablation behavior of C/C–HfC composites prepared by precursor infiltration and pyrolysis[J]. Corros Sci, 2015, 94: 165–170.

    [63] [63] LI K Z, DUAN T, ZHANG J P, et al. Ablation mechanism of carbon/carbon composites modified by HfC–SiC in two conditions under oxyacetylene torch[J]. J Mater Sci Technol, 2017, 33(1): 71–78.

    [64] [64] YAN C L, LIU R J, ZHA B L, et al. Fabrication and properties of 3-dimensional 4-directional Cf/HfC–SiC composites by precursor impregnation and pyrolysis process[J]. J Alloys Compd, 2018, 739:955–960.

    [66] [66] ZHANG J P, QU J L, FU Q G. Ablation behavior of nose-shaped HfB2–SiC modified carbon/carbon composites exposed to oxyacetylene torch[J]. Corros Sci, 2019, 151: 87–96.

    [67] [67] LU J H, HAO K, LIU L, et al. Ablation resistance of SiC–HfC–ZrC multiphase modified carbon/carbon composites[J]. Corros Sci, 2016,103: 1–9.

    [68] [68] LI Q G, DONG S M, WANG Z, et al. Microstructures and mechanical properties of 3D 4-directional, Cf/ZrC–SiC composites using ZrC precursor and polycarbosilane[J]. Mater Sci Eng B, 2013, 178(18):1186–1190.

    [69] [69] ZHANG M Y, LI K Z, SHI X H, et al. Effects of SiC interphase on the mechanical and ablation properties of C/C–ZrC–ZrB2–SiC composites prepared by precursor infiltration and pyrolysis[J]. Mater Des, 2017,122: 322–329.

    [70] [70] QIAN Y B, ZHANG W G, GE M, et al. Frictional response of a novel C/C–ZrB2–ZrC–SiC composite under simulated braking[J]. J Adv Ceram, 2013, 2(2): 157–161.

    [71] [71] FU Y Q, ZHANG Y L, LI T, et al. Effect of SiC on the anti-ablation resistance and flexural strength of (Hf–Ta–Zr)C–C/C composites[J]. J Eur Ceram Soc, 2024, 44(1): 107–118.

    [72] [72] LYU Y, CHENG Y, ZHAO G D, et al. Modification of SiBCN by Zr atom and its effect on ablative resistance of Cf/SiBCN(Zr) composites[J]. Compos Part B Eng, 2023, 253: 110511.

    [74] [74] WEN Q B, XU Y P, XU B B, et al. Single-source-precursor synthesis of dense SiC/HfCx N1–x-based ultrahigh-temperature ceramic nanocomposites[J]. Nanoscale, 2014, 6(22): 13678–13689.

    [75] [75] CHENG J, DONG Z J, ZHU H, et al. Synthesis and ceramisation of organometallic precursors for Ta4HfC5 and TaHfC2 ultra-fine powders through a facile one-pot reaction[J]. J Alloys Compd, 2022, 898:162989.

    [76] [76] FENG B, PETER J, FASEL C, et al. High-temperature phase and microstructure evolution of polymer-derived SiZrCN and SiZrBCN ceramic nanocomposites[J]. J Am Ceram Soc, 2020, 103(12): 7001–7013.

    [78] [78] WEN Q B, YU Z J, RIEDEL R. The fate and role of in situ formed carbon in polymer-derived ceramics[J]. Prog Mater Sci, 2020, 109:100623.

    [79] [79] WEN Q B, XU Y P, XU B B, et al. Single-source-precursor synthesis of dense SiC/HfCxN1?x-based ultrahigh-temperature ceramic nanocomposites[J]. Nanoscale, 2014, 6(22): 13678–13689.

    [80] [80] WANG Y G, FAN Y, ZHANG L G, et al. Polymer-derived SiAlCN ceramics resist oxidation at 1400 ℃ [J]. Scr Mater, 2006, 55(4):295–297.

    [81] [81] RAJ R. Fundamental research in structural ceramics for service near 2000℃[J]. J Am Ceram Soc, 1993, 76(9): 2147–2174.

    [82] [82] RIEDEL R, KIENZLE A, DRESSLER W, et al. A silicoboron carbonitride ceramic stable to 2 000℃[J]. Nature, 1996, 382: 796–798.

    [83] [83] MERA G, RIEDEL R, POLI F, et al. Carbon-rich SiCN ceramics derived from phenyl-containing poly(silylcarbodiimides)[J]. J Eur Ceram Soc, 2009, 29(13): 2873–2883.

    [84] [84] WANG Z C, ALDINGER F, RIEDEL R. Novel silicon–boron–carbon–nitrogen materials thermally stable up to 2200℃[J]. J Am Ceram Soc, 2001, 84(10): 2179–2183.

    [85] [85] RIEDEL R, KLEEBE H J, SCH?NFELDER H, et al. A covalent micro/nano-composite resistant to high-temperature oxidation[J].Nature, 1995, 374(6522): 526–528.

    [86] [86] RAJ R, AN L N, SHAH S, et al. Oxidation kinetics of an amorphous silicon carbonitride ceramic[J]. J Am Ceram Soc, 2001, 84(8):1803–1810.

    [87] [87] YUAN J, GALETZ M, LUAN X G, et al. High-temperature oxidation behavior of polymer-derived SiHfBCN ceramic nanocomposites[J]. J Eur Ceram Soc, 2016, 36(12): 3021–3028.

    [88] [88] WANG J Y, DUAN X M, YANG Z H, et al. Ablation mechanism and properties of SiCf/SiBCN ceramic composites under an oxyacetylene torch environment[J]. Corros Sci, 2014, 82: 101–107.

    [89] [89] COLOMBO P, MERA G, RIEDEL R, et al. Polymer-derived ceramics:40 years of research and innovation in advanced ceramics[J]. J Am Ceram Soc, 2010, 93(7): 1805–1837.

    [90] [90] WEN Q B, YU Z J, LIU X M, et al. Mechanical properties and electromagnetic shielding performance of single-source-precursor synthesized dense monolithic SiC/HfCxN1?x/C ceramic nanocomposites[J]. J Mater Chem C, 2019, 7(34): 10683–10693.

    [91] [91] STABLER C, SCHLIEPHAKE D, HEILMAIER M, et al. Influence of SiC/silica and carbon/silica interfaces on the high-temperature creep of silicon oxycarbide-based glass ceramics: A case study[J]. Adv Eng Mater, 2019, 21(6): 180–196.

    [92] [92] MORAES K V, INTERRANTE L V. Processing, fracture toughness, and vickers hardness of allylhydridopolycarbosilane-derived silicon carbide[J]. J Am Ceram Soc, 2003, 86(2): 342–346.

    [93] [93] NIIHARA K. New design concept of structural ceramics[J]. J Ceram Soc Japan, 1991, 99(1154): 974–982.

    [94] [94] HE J B, CAO Y J, ZHANG Y X, et al. Mechanical properties of ZrB2–SiC ceramics prepared by polymeric precursor route[J]. Ceram Int, 2018, 44(6): 6520–6526.

    [95] [95] HE J B, GAO Y, WANG Y G, et al. Synthesis of ZrB 2-SiC nanocomposite powder via polymeric precursor route[J]. Ceram Int,2017, 43(1): 1602–1607.

    [96] [96] FENG B, FETZER A K, ULRICH A S, et al. Monolithic ZrB2-based UHTCs using polymer-derived Si(Zr, B)CN as sintering aid[J]. J Am Ceram Soc, 2022, 105(1): 99–110.

    Tools

    Get Citation

    Copy Citation Text

    JIANG Tianxing, ZHOU Tianci, WEN Qingbo, YU Zhaoju, XIONG Xiang. Research Progress in Polymer Derived Ceramics Conversion Ultra-High Temperature Ceramics and Composite Materials[J]. Journal of the Chinese Ceramic Society, 2024, 52(9): 2827

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Feb. 28, 2024

    Accepted: --

    Published Online: Nov. 8, 2024

    The Author Email: YU Zhaoju (zhaojuyu@xmu.edu.cn)

    DOI:10.14062/j.issn.0454-5648.20240156

    Topics