Laser & Optoelectronics Progress, Volume. 59, Issue 12, 1234001(2022)

Prediction of Cr, Mn, and Ni in Medium and Low Alloy Steels by GA-BP Neural Network Combined with EDXRF Technology

Haisheng Song1, Zhao Chen1、*, Dacheng Xu2, and Rongwang Xu3
Author Affiliations
  • 1School of Physics and Electronic Engineering, Northwest Normal University, Lanzhou 730070, Gansu , China
  • 2School of Electronic Information, Soochow University, Suzhou 215031, Jiangsu , China
  • 3Kunshan Soohow Instrument Technology Co., Ltd., Suzhou 215300, Jiangsu , China
  • show less
    Figures & Tables(8)
    Structure diagram of BP neural network
    Schematic of background subtraction by two-point method
    Mean square error curve of training process
    Linear regression results of training process
    Error distributions of analysis results of three elements by GA-BP and FP methods. (a) Cr element; (b) Mn element; (c) Ni element
    • Table 1. Element content range of experimental samples of various alloy steels

      View table

      Table 1. Element content range of experimental samples of various alloy steels

      Sample nameCrMnNi
      18CrNiW0.340-1.8300.120-0.7102.680-4.580
      30CrMnSiNiA0.587-1.5920.744-1.6070.971-2.064
      38CrMoAl0.995-2.0280.161-0.6910.069-0.443
      CrWMn0.319-1.3540.172-1.2800.037-0.245
      GSBH40067-930.581-1.9500.216-1.3500.229-2.290
      YSBS15301-940.313-1.5200.292-1.3100.521-3.180
    • Table 2. Important parameters of GA-BP neural network

      View table

      Table 2. Important parameters of GA-BP neural network

      ParameterNumeric valueParameterNumeric value
      Training sample108×3Output layer Activation functionpurelin
      Test sample36×3Population size45
      Input neuron3Iteration ordinal Number20
      Hidden layer neuron5Learning rate0.1
      Output layer neuron3Training steps1000
      Training functiontrainlmCrossover rate0.2
      Hidden layer Activation functiontansigMutation rate0.0025
    • Table 3. Prediction results of CrWMn series samples

      View table

      Table 3. Prediction results of CrWMn series samples

      SampleAnalysis methodCrMnNi

      Predicted

      value

      Relative standard

      deviation

      Predicted

      value

      Relative standard

      deviation

      Predicted

      value

      Relative standard

      deviation

      CrWMn1Standard0.3191.2800.037
      FP0.3509.7181.2700.7810.02045.946
      GA-BP0.3303.4481.2850.3910.05754.054
      CrWMn2Standard0.4440.9590.088
      FP0.4400.9010.9204.0670.03065.909
      GA-BP0.4470.6761.0176.0480.15171.591
      CrWMn3Standard0.7630.8830.131
      FP0.7403.0140.9608.7200.07046.565
      GA-BP0.7491.8350.8991.8120.10122.901
      CrWMn4Standard1.0600.3470.191
      FP1.0902.8300.3706.6280.14026.702
      GA-BP1.0731.2260.3799.2220.15120.942
      CrWMn5Standard1.3540.1720.245
      FP1.4507.0900.20016.2790.20018.367
      GA-BP1.3912.7330.14416.2790.2616.531
    Tools

    Get Citation

    Copy Citation Text

    Haisheng Song, Zhao Chen, Dacheng Xu, Rongwang Xu. Prediction of Cr, Mn, and Ni in Medium and Low Alloy Steels by GA-BP Neural Network Combined with EDXRF Technology[J]. Laser & Optoelectronics Progress, 2022, 59(12): 1234001

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: X-Ray Optics

    Received: Apr. 30, 2021

    Accepted: Jun. 27, 2021

    Published Online: Jun. 9, 2022

    The Author Email: Zhao Chen (chenzhao970316@163.com)

    DOI:10.3788/LOP202259.1234001

    Topics