Infrared and Laser Engineering, Volume. 50, Issue 12, 20210424(2021)

Research progress of laser-beam-induced current microscopy technology

Lei Lv1, Dan Su1,2, Yi Yang1, Shanjiang Wang1, Huanli Zhou1, Zhaoguo Liu1, and Tong Zhang1,2,3
Author Affiliations
  • 1Joint International Research Laboratory of Information Display and Visualization, School of Electronics Science and Engineering, Southeast University, Nanjing 210096, China
  • 2Key Laboratory of Micro-Inertial Instrument and Advanced Navigation Technology, Ministry of Education, School of Instrument Science and Engineering, Southeast University, Nanjing 210096, China
  • 3Suzhou Key Laboratory of Metal Nano-Optoelectronic Technology, Southeast University Suzhou Campus, Suzhou 215123, China
  • show less
    References(47)

    [1] Tennyson E M, Doherty T A S, Stranks S D. Heterogeneity at multiple length scales in halide perovskite semiconductors[J]. Nature Reviews Materials, 4, 573-587(2019).

    [2] Tennyson E M, Howard J M, Leite M S. Mesoscale functional imaging of materials for photovoltaics[J]. ACS Energy Letters, 2, 1825-1834(2017).

    [3] Krogstrup P, Jørgensen H I, Heiss M, et al. Single-nanowire solar cells beyond the Shockley–Queisser limit[J]. Nature Photonics, 7, 306-310(2013).

    [4] Sundararajan S P, Grady N K, Mirin N, et al. Nanoparticle-induced enhancement and suppression of photocurrent in a silicon photodiode[J]. Nano Letters, 8, 624-630(2008).

    [5] Ha D, Gong C, Leite M S, et al. Demonstration of resonance coupling in scalable dielectric microresonator coatings for photovoltaics[J]. ACS Applied Materials & Interfaces, 8, 24536-24542(2016).

    [6] Hennessy J, Mcdonald P. Simple modeling techniques for analysis of laser beam induced current images[J]. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 8, 1127-1132(1990).

    [7] Wallmark J T. A new semiconductor photocell using lateral photoeffect[J]. Proceedings of the IRE, 45, 474-483(1957).

    [8] Szedon J R, Temofonte T A, O'keeffe T W. Scanned laser response studies of metal-insulator-silicon solar cells in polycrystalline czochralski silicon[J]. Solar Cells, 1, 251-259(1980).

    [9] Marek J. Light‐beam‐induced current characterization of grain boundaries[J]. Journal of Applied Physics, 55, 318-326(1984).

    [10] Bajaj J, Bubulac L O, Newman P R, et al. Spatial mapping of electrically active defects in HgCdTe using laser beam‐induced current[J]. Journal of Vacuum Science & Technology A, 5, 3186-3189(1987).

    [11] Chen J, Sekiguchi T, Yang D, et al. Electron-beam-induced current study of grain boundaries in multicrystalline silicon[J]. Journal of Applied Physics, 96, 5490-5495(2004).

    [12] Mukhopadhyay S, Das A J, Narayan K S. High-resolution photocurrent imaging of bulk heterojunction solar cells[J]. Journal of Physical Chemistry Letters, 4, 161-169(2013).

    [13] Qiu W, Hu W. Laser beam induced current microscopy and photocurrent mapping for junction characterization of infrared photodetectors[J]. Science China Physics, Mechanics & Astronomy, 58, 1-13(2014).

    [14] Li Y, Hu W, Ye Z, et al. Direct mapping and characterization of dry etch damage-induced PN junction for long-wavelength HgCdTe infrared detector arrays[J]. Optics Letters, 42, 1325-1328(2017).

    [15] Kwarikunda N, Van Dyk E E, Vorster F J, et al. Application of LBIC measurements for characterisation of triple junction solar cells[J]. Physica B: Condensed Matter, 439, 122-125(2014).

    [16] Liu F, Kar S. Quantum Carrier Reinvestment-induced ultrahigh and broadband photocurrent responses in graphene–silicon junctions[J]. ACS Nano, 8, 10270-10279(2014).

    [17] Reuter C, Frisenda R, Lin D-Y, et al. A versatile scanning photocurrent mapping system to characterize optoelectronic devices based on 2D materials[J]. Small Methods, 1, 1700119(2017).

    [18] Schubert M C, Mundt L E, Walter D, et al. Spatially resolved performance analysis for perovskite solar cells[J]. Advanced Energy Materials, 10, 1904001(2020).

    [19] Mann S A, Oener S Z, Cavalli A, et al. Quantifying losses and thermodynamic limits in nanophotonic solar cells[J]. Nature Nanotechnology, 11, 1071-1075(2016).

    [20] Burghard M, Mews A. High-resolution photocurrent mapping of carbon nanostructures[J]. ACS Nano, 6, 5752-5756(2012).

    [21] Rauhut N, Engel M, Steiner M, et al. Antenna-enhanced photocurrent microscopy on single-walled carbon nanotubes at 30 nm resolution[J]. ACS Nano, 6, 6416-6421(2012).

    [22] Coffey D C, Reid O G, Rodovsky D B, et al. Mapping local photocurrents in polymer/fullerene solar cells with photoconductive atomic force microscopy[J]. Nano Letters, 7, 738-744(2007).

    [23] Parkinson P, Lee Y H, Fu L, et al. Three-dimensional in situ photocurrent mapping for nanowire photovoltaics[J]. Nano Letters, 13, 1405-1409(2013).

    [24] Zhu H, Xie H, Yang Y, et al. Mapping hot electron response of individual gold nanocrystals on a TiO2 photoanode[J]. Nano Letters, 20, 2423-2431(2020).

    [25] Larmande Y, Vervisch V, Delaporte P, et al. LBIC measurement optimization to detect laser annealing induced defects in Si[J]. Materials Science and Engineering: B, 177, 1628-1632(2012).

    [26] Mcneill C R, Frohne H, Holdsworth J L, et al. Near-field scanning photocurrent measurements of polyfluorene blend devices:   Directly correlating morphology with current generation[J]. Nano Letters, 4, 2503-2507(2004).

    [27] [27] Tománek P, Skarvada P, Senderáková D, et al. Nanooptics of locally induced photocurrent in monocrystalline Si solar cells [C]Photonics, Devices, Systems IV, SPIE, 2008, 7138: 713829.

    [28] Brenner T J K, Mcneill C R. Spatially resolved spectroscopic mapping of photocurrent and photoluminescence in polymer blend photovoltaic devices[J]. The Journal of Physical Chemistry C, 115, 19364-19370(2011).

    [29] Rao G, Freitag M, Chiu H Y, et al. Raman and photocurrent imaging of electrical stress-induced p-n junctions in graphene[J]. ACS Nano, 5, 5848-5854(2011).

    [30] Gao Y, Martin T P, Thomas A K, et al. Resonance raman spectroscopic- and photocurrent imaging of polythiophene/fullerene solar cells[J]. The Journal of Physical Chemistry Letters, 1, 178-182(2009).

    [31] Zhu T, Snaider J M, Yuan L, et al. Ultrafast dynamic microscopy of carrier and exciton transport[J]. Annual Review of Physical Chemistry, 70, 219-244(2019).

    [32] Liu X, Wu B, Zhang Q, et al. Elucidating the localized plasmonic enhancement effects from a single Ag nanowire in oganic solar cells[J]. ACS Nano, 8, 10101-10110(2014).

    [33] Yang B, Chen J, Shi Q, et al. High resolution mapping of two-photon excited photocurrent in perovskite microplate photodetector[J]. Journal of Physical Chemistry Letters, 9, 5017-5022(2018).

    [34] Draguta S, Christians J A, Morozov Y V, et al. A quantitative and spatially resolved analysis of the performance-bottleneck in high efficiency, planar hybrid perovskite solar cells[J]. Energy & Environmental Science, 11, 960-969(2018).

    [35] Eperon G E, Moerman D, Ginger D S. Anticorrelation between local photoluminescence and photocurrent suggests variability in contact to active layer in perovskite solar cells[J]. ACS Nano, 10, 10258-10266(2016).

    [36] Leblebici S Y, Leppert L, Li Y, et al. Facet-dependent photovoltaic efficiency variations in single grains of hybrid halide perovskite[J]. Nature Energy, 1, 16093(2016).

    [37] Tennyson E M, Frantz J A, Howard J M, et al. Photovoltage tomography in polycrystalline solar cells[J]. ACS Energy Letters, 1, 899-905(2016).

    [38] Tennyson E M, Garrett J L, Frantz J A, et al. Nanoimaging of open-circuit voltage in photovoltaic devices[J]. Advanced Energy Materials, 5, 1501142(2015).

    [39] Leite M S, Abashin M, Lezec H J, et al. Nanoscale imaging of photocurrent and efficiency in CdTe solar cells[J]. ACS Nano, 8, 11883-11890(2014).

    [40] West B M, Stuckelberger M, Guthrey H, et al. Grain engineering: How nanoscale inhomogeneities can control charge collection in solar cells[J]. Nano Energy, 32, 488-493(2017).

    [41] Lee E J, Balasubramanian K, Weitz R T, et al. Contact and edge effects in graphene devices[J]. Nature Nanotechnology, 3, 486-490(2008).

    [42] Buscema M, Barkelid M, Zwiller V, et al. Large and tunable photothermoelectric effect in single-layer MoS2[J]. Nano Letters, 13, 358-363(2013).

    [43] Tagliabue G, Jermyn A S, Sundararaman R, et al. Quantifying the role of surface plasmon excitation and hot carrier transport in plasmonic devices[J]. Nature Communications, 9, 3394(2018).

    [44] Ha D, Yoon Y, Zhitenev N B. Nanoscale imaging of photocurrent enhancement by resonator array photovoltaic coatings[J]. Nanotechnology, 29, 145401(2018).

    [45] [45] West B M, Stuckelberger M, Nietzold T, et al. Machine learning crelative microscopy: How ''Big Data'' techniques can benefit thin film solar cell acterization [C]Proceedings of the 2017 IEEE 44th Photovoltaic Specialist Conference (PVSC), 2017: 33093314.

    [46] Tennyson E M, Gong C, Leite M S. Imaging energy harvesting and storage systems at the nanoscale[J]. ACS Energy Letters, 2, 2761-2777(2017).

    [47] Nilsson Z, Van Erdewyk M, Wang L, et al. Molecular reaction imaging of single-entity photoelectrodes[J]. ACS Energy Letters, 5, 1474-1486(2020).

    Tools

    Get Citation

    Copy Citation Text

    Lei Lv, Dan Su, Yi Yang, Shanjiang Wang, Huanli Zhou, Zhaoguo Liu, Tong Zhang. Research progress of laser-beam-induced current microscopy technology[J]. Infrared and Laser Engineering, 2021, 50(12): 20210424

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Lasers & Laser optics

    Received: Jun. 22, 2021

    Accepted: --

    Published Online: Feb. 9, 2022

    The Author Email:

    DOI:10.3788/IRLA20210424

    Topics