Frontiers of Optoelectronics, Volume. 15, Issue 3, 12200(2022)

Design of scalable metalens array for optical addressing

Tie Hu, Xing Feng, Zhenyu Yang, and Ming Zhao*
Author Affiliations
  • School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China
  • show less
    References(41)

    [1] [1] Bruzewicz, C.D., Chiaverini, J., Mcconnell, R., Sage, J.M.: Trapped-ion quantum computing: progress and challenges. Appl. Phys. Rev. 6(2), 021314 (2019)

    [2] [2] Niffenegger, R.J., Stuart, J., Sorace-Agaskar, C., Kharas, D., Bramhavar, S., Bruzewicz, C.D., Loh, W., Maxson, R.T., McConnell, R., Reens, D., West, G.N., Sage, J.M., Chiaverini, J.: Integrated multi-wavelength control of an ion qubit. Nature 586(7830), 538–542 (2020)

    [3] [3] Shih, C.Y., Motlakunta, S., Kotibhaskar, N., Sajjan, M., Hablützel, R., Islam, R.: Reprogrammable and high-precision holographic optical addressing of trapped ions for scalable quantum control. NPJ Quantum Information 7(1), 57 (2021)

    [4] [4] Debnath, S., Linke, N.M., Figgatt, C., Landsman, K.A., Wright, K., Monroe, C.: Demonstration of a small programmable quantum computer with atomic qubits. Nature 536(7614), 63–66 (2016)

    [5] [5] Olmschenk, S., Matsukevich, D.N., Maunz, P., Hayes, D., Duan,

    [6] [6] Knoernschild, C., Zhang, X.L., Isenhower, L., Gill, A.T., Lu, F.P., Saffman, M., Kim, J.: Independent individual addressing of multiple neutral atom qubits with a micromirror-based beam steering system. Appl. Phys. Lett. 97(13), 134101 (2010)

    [7] [7] Crain, S., Mount, E., Baek, S., Kim, J.: Individual addressing of trapped 171Yb+ ion qubits using a microelectromechanical systems-based beam steering system. Appl. Phys. Lett. 105(18), 181115 (2014)

    [8] [8] Streed, E.W., Norton, B.G., Jechow, A., Weinhold, T.J., Kielpinski, D.: Imaging of trapped ions with a microfabricated optic for quantum information processing. Phys. Rev. Lett. 106(1), 010502.1–010502.4 (2011)

    [9] [9] Ghadimi, M., Blūms, V., Norton, B.G., Fisher, P.M., Connell, S.C., Amini, J.M., Volin, C., Hayden, H., Pai, C.S., Kielpinski, D., Lobino, M., Streed, E.W.: Scalable ion-photon quantum interface based on integrated diffractive mirrors. NPJ Quantum Information 3(1), 4 (2017)

    [10] [10] Kielpinski, D., Volin, C., Streed, E.W., Lenzini, F., Lobino, M.: Integrated optics architecture for trapped-ion quantum information processing. Quantum Inf. Process. 15(12), 5315–5338 (2016)

    [11] [11] Mehta, K.K., Bruzewicz, C.D., McConnell, R., Ram, R.J., Sage, J.M., Chiaverini, J.: Integrated optical addressing of an ion qubit. Nat. Nanotechnol. 11(12), 1066–1070 (2016)

    [12] [12] Mehta, K.K., Ram, R.J.: Precise and diffraction-limited waveguide-to-free-space focusing gratings. Sci. Rep. 7(1), 2019 (2017)

    [13] [13] Mehta, K.K., Zhang, C., Malinowski, M., Nguyen, T.L., Stadler, M., Home, J.P.: Integrated optical multi-ion quantum logic. Nature 586(7830), 533–537 (2020)

    [14] [14] Neshev, D., Aharonovich, I.: Optical metasurfaces: new generation building blocks for multi-functional optics. Light Sci. Appl. 7(1), 58 (2018)

    [15] [15] Huang, K., Qin, F., Liu, H., Ye, H., Qiu, C., Hong, M., Luk’yanchuk, B., Teng, J.: Planar diffractive lenses: fundamentals, functionalities, and applications. Adv. Mater. 30, 1704556 (2018)

    [16] [16] de Leon, N.P., Itoh, K.M., Kim, D., Mehta, K.K., Northup, T.E., Paik, H., Palmer, B.S., Samarth, N., Sangtawesin, S., Steuerman, D.W.: Materials challenges and opportunities for quantum computing hardware. Science 372(6539), eabb2823 (2021)

    [17] [17] Kamali, S.M., Arbabi, A., Arbabi, E., Horie, Y., Faraon, A.: Decoupling optical function and geometrical form using conformal flexible dielectric metasurfaces. Nat. Commun. 7(1), 11618 (2016)

    [18] [18] Jiang, Z.H., Kang, L., Werner, D.H.: Conformal metasurfacecoated dielectric waveguides for highly confined broadband optical activity with simultaneous low-visibility and reduced crosstalk. Nat. Commun. 8(1), 356 (2017)

    [19] [19] Dolan, J.A., Cai, H., Delalande, L., Li, X., Martinson, A.B.F., de Pablo, J.J., López, D., Nealey, P.F.: Broadband liquid crystal tunable metasurfaces in the visible: liquid crystal inhomogeneities across the metasurface parameter space. ACS Photonics 8(2), 567–575 (2021)

    [20] [20] Khorasaninejad, M., Capasso, F.: Metalenses: versatile multifunctional photonic components. Science 358(6367), eaam8100 (2017)

    [21] [21] Capasso, F.: The future and promise of flat optics: a personal perspective. Nanophotonics 7(6), 953–957 (2018)

    [22] [22] Zhao, R., Sain, B., Wei, Q., Tang, C., Li, X., Weiss, T., Huang, L., Wang, Y., Zentgraf, T.: Multichannel vectorial holographic display and encryption. Light Sci Appl 7(1), 95 (2018)

    [23] [23] Chen, M.K., Wu, Y., Feng, L., Fan, Q., Lu, M., Xu, T., Tsai, D.P.: Principles, functions, and applications of optical metalens. Adv. Opt. Mater. 9(4), 2001414 (2021)

    [24] [24] Leitis, A., Tseng, M.L., John-Herpin, A., Kivshar, Y.S., Altug, H.: Wafer-scale functional metasurfaces for mid-infrared photonics and biosensing. Adv. Mater. 33(43), e2102232 (2021)

    [25] [25] Wang, H.C., Chu, C.H., Wu, P.C., Hsiao, H.H., Wu, H.J., Chen, J.W., Lee, W.H., Lai, Y.C., Huang, Y.W., Tseng, M.L., Chang, S.W., Tsai, D.P.: Ultrathin planar cavity metasurfaces. Small 14(17), e1703920 (2018)

    [26] [26] Zang, W., Yuan, Q., Chen, R., Li, L., Li, T., Zou, X., Zheng, G., Chen, Z., Wang, S., Wang, Z., Zhu, S.: Chromatic dispersion manipulation based on metalenses. Adv. Mater. 32(27), e1904935 (2020)

    [27] [27] Li, W., Qi, J., Sihvola, A.: Meta-imaging: from non-computational to computational. Adv. Opt. Mater. 8(23), 2001000 (2020)

    [28] [28] Wei, Q., Huang, L., Zentgraf, T., Wang, Y.: Optical wavefront shaping based on functional metasurfaces. Nanophotonics 9(5), 987–1002 (2020)

    [29] [29] Tkachenko, G., Stellinga, D., Ruskuc, A., Chen, M., Dholakia, K., Krauss, T.F.: Optical trapping with planar silicon metalenses. Opt. Lett. 43(14), 3224–3227 (2018)

    [30] [30] Tseng, M.L., Hsiao, H.H., Chu, C.H., Chen, M.K., Sun, G., Liu, A.Q., Tsai, D.P.: Metalenses: advances and applications. Adv. Opt. Mater. 6(18), 1800554 (2018)

    [31] [31] Zhang, C., Divitt, S., Fan, Q., Zhu, W., Agrawal, A., Lu, Y., Xu, T., Lezec, H.J.: Low-loss metasurface optics down to the deep ultraviolet region. Light Sci. Appl. 9(1), 55 (2020)

    [32] [32] Lin, R.J., Su, V.C., Wang, S., Chen, M.K., Chung, T.L., Chen, Y.H., Kuo, H.Y., Chen, J.W., Chen, J., Huang, Y.T., Wang, J.H., Chu, C.H., Wu, P.C., Li, T., Wang, Z., Zhu, S., Tsai, D.P.: Achromatic metalens array for full-colour light-field imaging. Nat. Nanotechnol. 14(3), 227–231 (2019)

    [33] [33] Yang, Z., Wang, Z., Wang, Y., Feng, X., Zhao, M., Wan, Z., Zhu, L., Liu, J., Huang, Y., Xia, J., Wegener, M.: Generalized Hartmann-Shack array of dielectric metalens sub-arrays for polarimetric beam profiling. Nat. Commun. 9(1), 4607 (2018)

    [34] [34] Wang, Y., Wang, Z., Feng, X., Zhao, M., Zeng, C., He, G., Yang, Z., Zheng, Y., Xia, J.: Dielectric metalens-based Hartmann-Shack array for a high-efficiency optical multiparameter detection system. Photonics Research 8(4), 482–489 (2020)

    [35] [35] Feng, X., Wang, Y.X., Wei, Y.X., Hu, T., Xiao, S.Y., He, G.Q., Zhao, M., Xia, J.S., Yang, Z.Y.: Optical multiparameter detection system based on a broadband achromatic metalens array. Adv. Opt. Mater. 9(19), 2100772 (2021)

    [36] [36] Li, L., Liu, Z., Ren, X., Wang, S., Su, V.C., Chen, M.K., Chu, C.H., Kuo, H.Y., Liu, B., Zang, W., Guo, G., Zhang, L., Wang, Z., Zhu, S., Tsai, D.P.: Metalens-array-based high-dimensional and multiphoton quantum source. Science 368(6498), 1487–1490 (2020)

    [37] [37] Gao, L., Lemarchand, F., Lequime, M.: Exploitation of multiple incidences spectrometric measurements for thin film reverse engineering. Opt. Express 20, 15734–15751 (2012)

    [38] [38] Sun, T., Hu, J., Zhu, X., Xu, F., Wang, C.: Broadband single-chip full stokes polarization-spectral imaging based on all-dielectric spatial multiplexing metalens. Laser Photonics Rev. 16, 2100650 (2022)

    [39] [39] Khorasaninejad, M., Chen, W.T., Oh, J., Capasso, F.: Super-dispersive off-axis meta-lenses for compact high resolution spectroscopy. Nano Lett. 16(6), 3732–3737 (2016)

    [40] [40] Rabiner, L.R., Schafer, R.W., Rader, C.M.: The Chirp z-transform algorithm and its application. Bell Syst. Tech. J. 48(5), 1249–1292 (2014)

    [41] [41] Meem, M., Banerji, S., Pies, C., Oberbiermann, T., Majumder, A., Sensale-Rodriguez, B., Menon, R.: Large-area, high-numericalaperture multi-level diffractive lens via inverse design. Optica 7(3), 252–253 (2020)

    Tools

    Get Citation

    Copy Citation Text

    Tie Hu, Xing Feng, Zhenyu Yang, Ming Zhao. Design of scalable metalens array for optical addressing[J]. Frontiers of Optoelectronics, 2022, 15(3): 12200

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: RESEARCH ARTICLE

    Received: Dec. 19, 2021

    Accepted: Jan. 25, 2022

    Published Online: Jan. 21, 2023

    The Author Email: Ming Zhao (zhaoming@hust.edu.cn)

    DOI:10.1007/s12200-022-00035-2

    Topics