Journal of Terahertz Science and Electronic Information Technology , Volume. 23, Issue 3, 214(2025)
Terahertz channel propagation and physical layer security characteristics in corner scenarios
[2] [2] MAHDI AZARI M, SOLANKI S, CHATZINOTAS S, et al. THz-empowered UAVs in 6G: opportunities, challenges, and trade-offs[J]. IEEE Communications Magazine, 2022, 60(5): 24-30. doi: 10.1109/MCOM.001.2100889.
[4] [4] YI Haofan, GUAN Ke, HE Danping, et al. Characterization for the vehicle-to-infrastructure channel in urban and highway scenarios at the terahertz band[J]. IEEE Access, 2019(7): 166984-166996. doi: 10.1109/ACCESS.2019.2953890.
[6] [6] MA J J, SHRESTHA R, MITTLEMAN L. Invited article: channel performance for indoor and outdoor terahertz wireless links[J]. APL Photonics, 2018, 3(5): 051601. doi: 10.1063/1.5014037.
[8] [8] PRIEBE S, JASTROW C, JACOB M, et al. Channel and propagation measurements at 300 GHz[J]. IEEE Transactions on Antennas and Propagation, 2011, 59(5): 1688-1698. doi: 10.1109/TAP.2011.2122294.
[9] [9] LI Da, LIU Wenbo, WEI Menghan, et al. Experimental and theoretical exploration of terahertz channel performance through glass doors[J]. Nano Communication Networks, 2024(39): 100496. doi: 10.1016/j.nancom.2024.100496.
[10] [10] TALEB F, HERNANDEZ-CARDOSO G G, CASTRO-CAMUS E, et al. Transmission, reflection, and scattering characterization of building materials for indoor THz communications[J]. IEEE Transactions on Terahertz Science and Technology, 2023, 13(5): 421-430. doi: 10.1109/TTHZ.2023.3281773.
[11] [11] KHAWAJA W, GUVENC D, MATOLAK D W, et al. A survey of air-to-ground propagation channel modeling for unmanned aerial vehicles[J]. IEEE Communications Surveys & Tutorials, 2019, 21(3): 2361-2391. doi: 10.1109/COMST.2019.2915069.
[12] [12] ZENG Y, ZHANG R, LIM T J, et al. Wireless communications with unmanned aerial vehicles: opportunities and challenges[J]. IEEE Communications Magazine, 2016, 54(5): 36-42. doi: 10.1109/MCOM.2016.7470933.
[13] [13] LI Da, LI Pei'an, ZHAO Jiabiao, et al. Ground-to-UAV sub-terahertz channel measurement and modeling[J]. Optics Express, 2024, 32(18): 32482-32494. doi: 10.1364/OE.534369.
[14] [14] JACOB M, PRIEBE R, DICKHOFF R, et al. Diffraction in mm and sub-mm wave indoor propagation channels[J]. IEEE Transactions on Microwave Theory and Techniques, 2012, 60(3): 833-844. doi: 10.1109/TMTT.2011.2178859.
[15] [15] KOKKONIEMI J, RINTANEN P, LEHTOMAKI J, et al. Diffraction effects in terahertz band-measurements and analysis[C]//IEEE Global Communications Conference(GLOBECOM). Washington, DC, USA: IEEE, 2016: 1-6. doi: 10.1109/GLOCOM.2016.7841734.
[16] [16] MA J, SHRESTHA R, ADELBERG J, et al. Security and eavesdropping in terahertz wireless links[J]. Nature, 2018(563): 89-93. doi: 10.1038/s41586-018-0609-x.
[17] [17] XING Y C, RAPPAPORT T S. Propagation measurement system and approach at 140 GHz―moving to 6G and above 100 GHz[C]//2018 IEEE Global Communications Conference(GLOBECOM). Abu Dhabi, UAE: IEEE, 2018: 1-6. doi: 10.1109/GLOCOM.2018.8647921.
[18] [18] HAN C, BICEN A O, AKYILDIZ I F. Multi-ray channel modeling and wideband characterization for wireless communications in the terahertz band[J]. IEEE Transactions on Wireless Communications, 2015, 14(5): 2402-2412. doi: 10.1109/TWC.2014.2386335.
[19] [19] JU S H, ALI S S H, JAVED M A, et al. Scattering mechanisms and modeling for terahertz wireless communications[C]//2019 IEEE International Conference on Communications(ICC). Shanghai, China: IEEE, 2019: 1-7. doi: 10.1109/ICC.2019.8761205.
[20] [20] WU Y, KOKKONIEMI J, HAN C, et al. Interference and coverage analysis for terahertz networks with indoor blockage effects and line-of-sight access point association[J]. IEEE Transactions on Wireless Communications, 2020, 20(3): 1472-1486. doi: 10.1109/TWC.2020.3033825.
[21] [21] PRIEBE S, JACOB M, KRNER T. The impact of antenna directivities on THz indoor channel characteristics[C]//2012 the 6th European Conference on Antennas and Propagation(EUCAP). Prague, Czech Republic: IEEE, 2012: 478-482. doi: 10.1109/EuCAP.2012.6205849.
[22] [22] MOLDOVAN A, RUDER M A, AKYILDIZ I, et al. LOS and NLOS channel modeling for terahertz wireless communication with scattered rays[C]//IEEE Globecom Workshops. Austin, TX, USA: IEEE, 2014: 388-392. doi: 10.1109/GLOCOMW.2014.7063462.
[23] [23] PETROV V, MOLTCHANOV D, KOUCHERYAVY Y, et al. Interference and SINR in dense terahertz networks[C]//Presented at the IEEE 82nd Vehicular Technology Conference. Boston, MA, USA: IEEE, 2015: 1-5. doi: 10.1109/VTCFall.2015.7390991.
[24] [24] RAPPAPORT T S, SUN S, MAYZUS R, et al. Millimeter wave mobile communications for 5G cellular: it will work![J]. IEEE Access, 2013(1): 335-349. doi: 10.1109/ACCESS.2013.2260813.
[25] [25] KRNER T S, PRIEBE S. Towards THz communications-status in research, standardization and regulation[J]. Journal of Infrared, Millimeter and Terahertz Waves, 2014(35): 53-62. doi: 10.1007/s10762-013-0014-3.
[26] [26] TEKBIYIK K, EKTI RIZA A. Terahertz band communication systems: challenges, novelties and standardization efforts[J]. Physical Communication, 2019, 35(7): 2-27. doi: 10.1016/j.phycom.2019.04.014.
[27] [27] CUI Jiayuan, LI Da, ZHAO Jiabiao. Terahertz channel modeling based on surface sensing characteristics[J]. Nano Communication Networks, 2024(42): 100533. doi: 10.1016/j.nancom.2024.100533.
[28] [28] RAPPAPORT T S. Wireless communication and applications above 100 GHz: opportunities and challenges for 6G and beyond[J]. IEEE Access, 2019(7): 78729-78757. doi: 10.1109/ACCESS.2019.2921522.
[29] [29] HANEDA K, JRVELINEN J, KARTTUNEN A, et al. A statistical spatio-temporal radio channel model for large indoor environments at 60 and 70 GHz[J]. IEEE Transactions on Antennas and Propagation, 2015, 63(6): 2694-2704. doi: 10.1109/TAP.2015.2412147.
[30] [30] WU Y P, KHISTI A, XIAO C S. A survey of physical layer security techniques for 5G wireless networks and challenges ahead[J]. IEEE Journal on Selected Areas in Communications, 2018, 36(4): 679-695. doi: 10.1109/JSAC.2018.2825560.
[31] [31] CSISZR I, KORNER J. Broadcast channels with confidential messages[J]. IEEE Transactions on Information Theory, 1978, 24(3): 339-348. doi: 10.1109/TIT.1978.1055892.
[32] [32] JU Ying, WANG Huiming, ZHENG Tongxing, et al. Safeguarding millimeter wave communications against randomly located eavesdroppers[J]. IEEE Transactions on Wireless Communication, 2018, 17(4): 2675-2689. doi: 10.1109/TWC.2018.2800747.
[33] [33] LI Pei'an, WANG Jianchen, ZHAO Liangbin, et al. Scattering and eavesdropping in terahertz wireless link by wavy surfaces[J]. IEEE Transactions on Antennas and Propagation, 2023, 71(4): 3590-3597. doi: 10.1109/TAP.2023.3241333.
[34] [34] WU Qingqing, ZHANG Rui. Towards smart and reconfigurable environment: intelligent reflecting surface aided wireless network[J]. IEEE Communications Magazine, 2019, 58(1): 106-112. doi: 10.1109/MCOM.001.1900107.
[35] [35] LIU Guohao, HE Xiangkun, ZHAO Jiabiao, et al. Impact of snowfall on terahertz channel performance: measurement and modeling insights[J]. IEEE Transactions on Terahertz Science and Technology, 2024, 14(5): 691-698. doi: 10.1109/TTHZ.2024.3417319.
[36] [36] FURQAN H M, HAMAMREH J M, ARSLAN H. Enhancing physical layer security of OFDM systems using channel shortening[C]//2017 IEEE the 28th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications(PIMRC). Montreal, QC, Canada: IEEE, 2017: 1-5. doi: 10.1109/PIMRC.2017.8292335.
[37] [37] WANG Qian, CHEN Zhi, MEI Weidong, et al. Improving physical layer security using UAV-enabled mobile relaying[J]. IEEE Wireless Communications Letters, 2017, 6(3): 310-313. doi: 10.1109/LWC.2017.2680449.
Get Citation
Copy Citation Text
SU Yue, LI Da, LIU Jiacheng, CUI Jiayuan, SUN Houjun, MA Jianjun. Terahertz channel propagation and physical layer security characteristics in corner scenarios[J]. Journal of Terahertz Science and Electronic Information Technology , 2025, 23(3): 214
Category:
Received: Sep. 2, 2024
Accepted: Jun. 5, 2025
Published Online: Jun. 5, 2025
The Author Email: MA Jianjun (jianjun_ma@bit.edu.cn)